RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1974, Volume 21, Number 2, Pages 155–159 (Mi tmf3877)  

This article is cited in 3 scientific papers (total in 3 papers)

Essentially nonlinear fields and vacuum polarization

D. I. Blokhintsev


Abstract: It is shown that the behavior of the energy density of interacting fields with large gradients accords with their classification in accordance with renormalizability. Vacuum polarization, which leads to fields with bounded derivatives, is also considered.

Full text: PDF file (680 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1974, 21:2, 1041–1045

Received: 29.05.1974

Citation: D. I. Blokhintsev, “Essentially nonlinear fields and vacuum polarization”, TMF, 21:2 (1974), 155–159; Theoret. and Math. Phys., 21:2 (1974), 1041–1045

Citation in format AMSBIB
\Bibitem{Blo74}
\by D.~I.~Blokhintsev
\paper Essentially nonlinear fields and vacuum polarization
\jour TMF
\yr 1974
\vol 21
\issue 2
\pages 155--159
\mathnet{http://mi.mathnet.ru/tmf3877}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 21
\issue 2
\pages 1041--1045
\crossref{https://doi.org/10.1007/BF01035550}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3877
  • http://mi.mathnet.ru/eng/tmf/v21/i2/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. N. Antropov, S. A. Vladimirov, “Symmetry groups of scalar relativistic fields with self-interaction”, Theoret. and Math. Phys., 35:1 (1978), 313–321  mathnet  crossref  zmath
    2. V. D. Bondarev, S. A. Vladimirov, “Spinor equation admitting an infinite group”, Theoret. and Math. Phys., 36:1 (1978), 651–652  mathnet  crossref  mathscinet
    3. Kosyakov, BP, “Physical meaning of renormalizability”, Physics of Particles and Nuclei, 32:4 (2001), 488  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:216
    Full text:102
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020