RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1973, Volume 17, Number 1, Pages 47–56 (Mi tmf3924)  

Thirring model. Asymptotic fields and $S$ matrix $\pm2\pi\surd{\overline{2n}}$, $n=0,1,2,…$

A. K. Pogrebkov


Abstract: Asymptotic fields and the $S$ matrix are constructed in the Thirring model. It is shown that asymptotic fields exist only if the interacting field is a densely defined bilinear form. For this bilinear form Lorentz covariance is proved and also that the spectral condition holds for the generators of space-time translations. It is shown that locality holds formally only for a coupling constant equal to $\pm2\pi\surd{\overline{2n}}$, $n=0,1,2,…$

Full text: PDF file (1062 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1973, 17:1, 977–983

Bibliographic databases:

Received: 10.01.1973

Citation: A. K. Pogrebkov, “Thirring model. Asymptotic fields and $S$ matrix $\pm2\pi\surd{\overline{2n}}$, $n=0,1,2,…$”, TMF, 17:1 (1973), 47–56; Theoret. and Math. Phys., 17:1 (1973), 977–983

Citation in format AMSBIB
\Bibitem{Pog73}
\by A.~K.~Pogrebkov
\paper Thirring model. Asymptotic fields and $S$ matrix
$\pm2\pi\surd{\overline{2n}}$, $n=0,1,2,\dots$
\jour TMF
\yr 1973
\vol 17
\issue 1
\pages 47--56
\mathnet{http://mi.mathnet.ru/tmf3924}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=464975}
\transl
\jour Theoret. and Math. Phys.
\yr 1973
\vol 17
\issue 1
\pages 977--983
\crossref{https://doi.org/10.1007/BF01035580}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3924
  • http://mi.mathnet.ru/eng/tmf/v17/i1/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:235
    Full text:97
    References:45
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019