RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 24, Number 1, Pages 100–108 (Mi tmf3971)  

Uniqueness of the limit Gibbs distribution in one-dimensional classical systems

R. A. Minlos, G. M. Natapov


Abstract: Uniqueness of the limit Gibbs distribution is proved for the one-dimensional latticesystems, in which the slow decreasing of the inter-particle interaction is allowed. The main restriction on the interaction potential $U(c)$ is
$$ \sum_{c\colon0\in c, \operatorname{diam}\{c\}=K}\operatorname{diam}\{c\}|U(c)|<B\ln\ln K, $$
where $c=\{x_1,…,x_n\}$ is an arbitrary configuration of particles on the lattice and $B$ is some sufficiently small constant.

Full text: PDF file (439 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 24:1, 697–703

Bibliographic databases:

Received: 20.09.1974

Citation: R. A. Minlos, G. M. Natapov, “Uniqueness of the limit Gibbs distribution in one-dimensional classical systems”, TMF, 24:1 (1975), 100–108; Theoret. and Math. Phys., 24:1 (1975), 697–703

Citation in format AMSBIB
\Bibitem{MinNat75}
\by R.~A.~Minlos, G.~M.~Natapov
\paper Uniqueness of the limit Gibbs distribution in one-dimensional classical systems
\jour TMF
\yr 1975
\vol 24
\issue 1
\pages 100--108
\mathnet{http://mi.mathnet.ru/tmf3971}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=489567}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 24
\issue 1
\pages 697--703
\crossref{https://doi.org/10.1007/BF01036631}


Linking options:
  • http://mi.mathnet.ru/eng/tmf3971
  • http://mi.mathnet.ru/eng/tmf/v24/i1/p100

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:197
    Full text:51
    References:29
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019