RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 24, Number 2, Pages 248–254 (Mi tmf4009)  

This article is cited in 2 scientific papers (total in 2 papers)

Convergence of the virial expansion for the classical canonical ensemble

Yu. G. Pogorelov


Abstract: The infinite set of coupled integral equations for correlation functions in the case of classical canonical ensemble similar to those of Kirkwood–Salsburg is derived starting with the Bogoliubov integral-differential equations. The theorem of existence and uniqueness of solution is proved for such equations by the method of a non-linear operator ones in the Banach space. The solution has a form of the power series in density.

Full text: PDF file (330 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 24:2, 808–812

Bibliographic databases:

Received: 22.10.1974

Citation: Yu. G. Pogorelov, “Convergence of the virial expansion for the classical canonical ensemble”, TMF, 24:2 (1975), 248–254; Theoret. and Math. Phys., 24:2 (1975), 808–812

Citation in format AMSBIB
\Bibitem{Pog75}
\by Yu.~G.~Pogorelov
\paper Convergence of the virial expansion for the classical canonical ensemble
\jour TMF
\yr 1975
\vol 24
\issue 2
\pages 248--254
\mathnet{http://mi.mathnet.ru/tmf4009}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=468996}
\zmath{https://zbmath.org/?q=an:0355.60064}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 24
\issue 2
\pages 808--812
\crossref{https://doi.org/10.1007/BF01029066}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4009
  • http://mi.mathnet.ru/eng/tmf/v24/i2/p248

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. G. Pogorelov, “Cluster property in a classical canonical ensemble”, Theoret. and Math. Phys., 30:3 (1977), 227–232  mathnet  crossref  mathscinet  zmath
    2. A. L. Rebenko, “Mathematical foundations of equilibrium classical statistical mechanics of charged particles”, Russian Math. Surveys, 43:3 (1988), 65–116  mathnet  crossref  mathscinet  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:223
    Full text:73
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019