RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 24, Number 3, Pages 391–399 (Mi tmf4023)  

This article is cited in 5 scientific papers (total in 5 papers)

Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. II. Paramagnetic phase in the generalized Hartree–Fock approximation

V. I. Lymar', Yu. G. Rudoi


Abstract: The matrix Green function is studied, which is constructed on the Pauli operators and describes transversal components of the dynamic susceptibility tensor of the anisotropic Heisenberg antiferromagnet with two sublattices and the spin l/2 in transversal and longitudinal magnetic field. In the generalized Hartree–Fock approximation (the damping not taken into account) the renormalized magnon spectrum and one-particle (normal as well as anomalous) correlation functions in paramagnetic phase are found. The cases of anisotropy of the types “light axis” and “light plane” are investigated in detail and, in particular, the behaviour of the phase boundary is obtained.

Full text: PDF file (483 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 24:3, 912–917

Received: 25.12.1974

Citation: V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. II. Paramagnetic phase in the generalized Hartree–Fock approximation”, TMF, 24:3 (1975), 391–399; Theoret. and Math. Phys., 24:3 (1975), 912–917

Citation in format AMSBIB
\Bibitem{LymRud75}
\by V.~I.~Lymar', Yu.~G.~Rudoi
\paper Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet.~II. Paramagnetic phase in the generalized Hartree--Fock approximation
\jour TMF
\yr 1975
\vol 24
\issue 3
\pages 391--399
\mathnet{http://mi.mathnet.ru/tmf4023}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 24
\issue 3
\pages 912--917
\crossref{https://doi.org/10.1007/BF01029878}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4023
  • http://mi.mathnet.ru/eng/tmf/v24/i3/p391

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Yu. G. Rudoi, Yu. A. Tserkovnikov, “One-particle green s function in the anisotropic Heisenberg model”, Theoret. and Math. Phys., 25:2 (1975), 1073–1084  mathnet  crossref
    2. V. I. Lymar', Yu. G. Rudoi, “Spectrum and correlation functions of an anisotropic heisenberg antiferromagnet. IV. Model of easy plane type with allowance for Dzyaloshinskii interaction”, Theoret. and Math. Phys., 34:2 (1978), 137–147  mathnet  crossref
    3. A. L. Kuzemsky, D. Marvakov, “Excitation spectrum of Heisenberg antiferromagnet at finite temperatures”, Theoret. and Math. Phys., 83:1 (1990), 441–448  mathnet  crossref  isi
    4. A. A. Isaev, M. Yu. Kovalevsky, S. V. Peletminskii, “Hamiltonian approach to the theory of antiferromagnetic systems”, Theoret. and Math. Phys., 95:1 (1993), 404–415  mathnet  crossref  mathscinet  zmath
    5. Yu. G. Rudoy, “The Bogoliubov–Tyablikov Green's function method in the quantum theory of magnetism”, Theoret. and Math. Phys., 168:3 (2011), 1318–1329  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:202
    Full text:64
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019