RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1970, Volume 2, Number 3, Pages 377–382 (Mi tmf4044)  

On the spectrum of the Dirac operator

S. N. Roze


Abstract: It is proved that the Dirac operator
$$ H \varphi=-i\sum_{j=1}^3\alpha_j(\frac\partial{\partial x_j}+iA_j(x))\varphi+\alpha_4\varphi-q(x)\varphi $$
does not possess a discrete spectrum lying on the continuous spectrum under the condition lim
$$ \lim_{|x|\to\infty}|x|(\sum_{j=1}^3|A_j(x)|+|q(x)|)=0. $$


Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1970, 2:3, 275–279

Received: 20.11.1969

Citation: S. N. Roze, “On the spectrum of the Dirac operator”, TMF, 2:3 (1970), 377–382; Theoret. and Math. Phys., 2:3 (1970), 275–279

Citation in format AMSBIB
\Bibitem{Roz70}
\by S.~N.~Roze
\paper On the spectrum of the Dirac operator
\jour TMF
\yr 1970
\vol 2
\issue 3
\pages 377--382
\mathnet{http://mi.mathnet.ru/tmf4044}
\transl
\jour Theoret. and Math. Phys.
\yr 1970
\vol 2
\issue 3
\pages 275--279
\crossref{https://doi.org/10.1007/BF01038048}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4044
  • http://mi.mathnet.ru/eng/tmf/v2/i3/p377

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:191
    Full text:83
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019