General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 1975, Volume 25, Number 2, Pages 164–177 (Mi tmf4061)  

This article is cited in 31 scientific papers (total in 31 papers)

Inverse Higgs effect in nonlinear realizations

E. A. Ivanov, V. I. Ogievetskii

Abstract: In theories with nonlinearly realised symmetry it is possible in a number of cases to eliminate some initial Goldstone and gauge fields by means of putting appropriate Cartan forms equal to zero. This is called the inverse Higgs phenomenon. We give a general treatment of the inverse Higgs phenomenon for gauge and space-time symmetries and consider four instructive examples which are the elimination of unessential gauge fields in chiral symmetry and in non-linearly realised supersymmetry and also the elimination of unessential Goldstone fields in the spontaneously broken conformal and projective symmetries.

Full text: PDF file (880 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 25:2, 1050–1059

Bibliographic databases:

Received: 27.02.1975

Citation: E. A. Ivanov, V. I. Ogievetskii, “Inverse Higgs effect in nonlinear realizations”, TMF, 25:2 (1975), 164–177; Theoret. and Math. Phys., 25:2 (1975), 1050–1059

Citation in format AMSBIB
\by E.~A.~Ivanov, V.~I.~Ogievetskii
\paper Inverse Higgs effect in nonlinear realizations
\jour TMF
\yr 1975
\vol 25
\issue 2
\pages 164--177
\jour Theoret. and Math. Phys.
\yr 1975
\vol 25
\issue 2
\pages 1050--1059

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Kapustnikov, “Gauge fields on the stability subgroup of the vacuum in a nonlinear realization”, Theoret. and Math. Phys., 29:2 (1976), 1063–1066  mathnet  crossref  mathscinet
    2. E. A. Ivanov, “On $\Sigma$ models of spontane ously broken symmetries”, Theoret. and Math. Phys., 28:3 (1976), 814–821  mathnet  crossref  mathscinet
    3. N. G. Pletnev, “Group of dynamical superconformal symmetry”, Theoret. and Math. Phys., 32:1 (1977), 592–594  mathnet  crossref  mathscinet  zmath
    4. N. G. Pletnev, “Linear supergravity”, Theoret. and Math. Phys., 43:1 (1980), 313–318  mathnet  crossref  mathscinet  isi
    5. V. P. Akulov, V. G. Zima, “$\sigma$ Model representation of supersymmetric gauge theory”, Theoret. and Math. Phys., 55:1 (1983), 322–330  mathnet  crossref  mathscinet  isi
    6. V. P. Akulov, I. A. Bandos, V. G. Zima, “Nonlinear realization of extended superconformal symmetry”, Theoret. and Math. Phys., 56:1 (1983), 635–642  mathnet  crossref  isi
    7. E. A. Ivanov, S. O. Krivonos, “Nonlinear realization of the conformal group in two dimensions and the Liouville equation”, Theoret. and Math. Phys., 58:2 (1984), 131–140  mathnet  crossref  mathscinet  zmath  isi
    8. E. A. Ivanov, S. O. Krivonos, “$N=4$ superextension of the Liouville equation with quaternion structure”, Theoret. and Math. Phys., 63:2 (1985), 477–486  mathnet  crossref  mathscinet  isi
    9. N. G. Pletnev, V. V. Serebryakov, “Covariant formalism of reductions of superconformal gauge theories to Poincaré supergravities”, Theoret. and Math. Phys., 70:2 (1987), 179–186  mathnet  crossref  mathscinet  isi
    10. E. A. Ivanov, “Superbranes and Super Born–Infeld Theories as Nonlinear Realizations”, Theoret. and Math. Phys., 129:2 (2001), 1543–1557  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Sakamura, Y, “Modified mode-expansion on a BPS wall related to the nonlinear realization”, Journal of High Energy Physics, 2003, no. 4, 008
    12. Clark, TE, “Brane dynamics from nonlinear realizations”, Physical Review D, 67:8 (2003), 085026  crossref  isi
    13. Sakamura Y., “Modified mode-expansion on a BPS wall related to the nonlinear realization”, Journal of High Energy Physics, 2003, no. 4, 008  isi
    14. E. A. Ivanov, “Conformal Theories–A{d}S Branes Transform, or One More Face of A{d}S/CFT”, Theoret. and Math. Phys., 139:1 (2004), 513–528  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Bellucci, S, “On the conformal side of the Penrose limit”, Czechoslovak Journal of Physics, 54:11 (2004), 1171  crossref  isi
    16. Clark, TE, “Non-BPS brane dynamics and duality”, Physical Review D, 70:10 (2004), 105005  crossref  isi
    17. Clark, TE, “AdS(d+1)-> AdS(d)”, Journal of Mathematical Physics, 46:10 (2005), 102304  crossref  mathscinet  zmath  adsnasa  isi
    18. Ivanov, EA, “AdS branes from partial breaking of superconformal symmetries”, Physics of Atomic Nuclei, 68:10 (2005), 1713  crossref  isi
    19. Ivanov, E, “Higher spins from non-linear realizations of OSp(1 vertical bar 8)”, Physics Letters B, 624:3–4 (2005), 304  crossref  isi
    20. Liu, LX, “Nonlinear realization and Weyl scale invariant p=2 brane”, Physical Review D, 74:4 (2006), 045030  crossref  isi
    21. Leclerc, M, “The Higgs sector of gravitational gauge theories”, Annals of Physics, 321:3 (2006), 708  crossref  isi
    22. Clark T.E., Love S.T., “Nonlinear realization of supersymmetric AdS space isometries”, Physical Review D, 73:2 (2006), 025001  crossref  isi
    23. Clark, TE, “Colliders and brane vector phenomenology”, Physical Review D, 78:11 (2008), 115004  crossref  adsnasa  isi
    24. Clark, TE, “Brane vector phenomenology”, Physics Letters B, 671:3 (2009), 383  crossref  adsnasa  isi
    25. Clark, TE, “Brane vector dynamics from embedding geometry”, Nuclear Physics B, 810:1–2 (2009), 97  crossref  mathscinet  adsnasa  isi
    26. McArthur I.N., “Nonlinear realizations of symmetries and unphysical Goldstone bosons”, Journal of High Energy Physics, 2010, no. 11, 140  isi
    27. Liu L.-X., “Dynamics of the Weyl scale invariant non-BPS p=3 brane”, Phys Atomic Nuclei, 74:12 (2011), 1684–1689  crossref  isi
    28. Carles Batlle, Joaquim Gomis, Kiyoshi Kamimura, “Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane”, SIGMA, 10 (2014), 011, 15 pp.  mathnet  crossref  mathscinet
    29. Kozyrev N., Krivonos S., Lechtenfeld O., Nersessian A., “Higher-Derivative N = 4 Superparticle in Three-Dimensional Spacetime”, Phys. Rev. D, 89:4 (2014), 045013  crossref  isi
    30. Ivanov E.A., “Gauge fields, nonlinear realizations, supersymmetry”, Phys. Part. Nuclei, 47:4 (2016), 508–539  crossref  isi  elib  scopus
    31. Kozyrev N., Krivonos S., “N=4, D=3 Born-Infeld Theory in Component Approach”, Xxiv International Conference on Integrable Systems and Quantum Symmetries (Isqs-24), Journal of Physics Conference Series, 804, IOP Publishing Ltd, 2017, UNSP 012024  crossref  isi
  • Number of views:
    This page:380
    Full text:152
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019