RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 25, Number 3, Pages 335–343 (Mi tmf4078)  

This article is cited in 7 scientific papers (total in 7 papers)

Renormalization group equations in different renormalization schemes

A. A. Vladimirov


Abstract: Renormalization group equations for the non-normalized Green functions and invariant charges are presented. The equivalence between different renormalization schemes is used to derive the relations between the renormalization group functions of these schemes. A simple way to carry out the renormalization group calculations is outlined.

Full text: PDF file (521 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 25:3, 1170–1175

Received: 18.03.1975

Citation: A. A. Vladimirov, “Renormalization group equations in different renormalization schemes”, TMF, 25:3 (1975), 335–343; Theoret. and Math. Phys., 25:3 (1975), 1170–1175

Citation in format AMSBIB
\Bibitem{Vla75}
\by A.~A.~Vladimirov
\paper Renormalization group equations in different renormalization schemes
\jour TMF
\yr 1975
\vol 25
\issue 3
\pages 335--343
\mathnet{http://mi.mathnet.ru/tmf4078}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 25
\issue 3
\pages 1170--1175
\crossref{https://doi.org/10.1007/BF01040125}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4078
  • http://mi.mathnet.ru/eng/tmf/v25/i3/p335

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. G. Klimenko, “Renormalization group and the ladder approximation in field theory”, Theoret. and Math. Phys., 37:3 (1978), 1111–1115  mathnet  crossref
    2. A. A. Vladimirov, “Methods of calculating many-loop diagrams and renormalization-group analysis of the $\varphi^4$ theory”, Theoret. and Math. Phys., 36:2 (1978), 732–737  mathnet  crossref  mathscinet
    3. D. I. Kazakov, O. V. Tarasov, D. V. Shirkov, “Analytic continuation of the results of perturbation theory for the model $g\varphi^4$ to the region $g\gtrsim1$”, Theoret. and Math. Phys., 38:1 (1979), 9–16  mathnet  crossref  mathscinet
    4. Kataev A.L. Stepanyantz K.V., “Nsvz Scheme with the Higher Derivative Regularization for N=1 Sqed”, Nucl. Phys. B, 875:2 (2013), 459–482  crossref  isi
    5. Stepanyantz K.V., “The Nsvz Beta-Function and the Schwinger-Dyson Equations For N=1 Sqed With N-F Flavors, Regularized By Higher Derivatives”, J. High Energy Phys., 2014, no. 8, 096  crossref  isi
    6. Kataev A.L. Stepanyantz K.V., “Scheme Independent Consequence of the Nsvz Relation For N=1 Sqed With N-F Flavors”, Phys. Lett. B, 730 (2014), 184–189  crossref  isi
    7. Kazantsev A.E. Shakhmanov V.Yu. Stepanyantz K.V., “New Form of the Exact Nsvz Beta-Function: the Three-Loop Verification For Terms Containing Yukawa Couplings”, J. High Energy Phys., 2018, no. 4, 130  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:495
    Full text:84
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019