RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 25, Number 3, Pages 344–357 (Mi tmf4079)  

This article is cited in 6 scientific papers (total in 6 papers)

Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum

E. D. Belokolos


Abstract: It is shown that the potential of oscillating lattice at fixed moment of time is a quasi-periodical function. Stationary states of quantum particle in quasi-periodical potential satisfy the generalized Floquet–Bloch theorem and can be characterized by the quasi-momentum which is connected with the density of states exactly in the same way as in the case of the particle in a purely periodical potential. If the quasi-momentum satisfies the generalized Bragg–Woolfe conditions, the spectrum may include the lacunae (forbidden zones), for the sizes of which the estimates are given.

Full text: PDF file (762 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 25:3, 1176–1184

Bibliographic databases:

Received: 07.01.1975

Citation: E. D. Belokolos, “Quantum particle in a one-dimensional deformed lattice. Estimates of the gaps in the spectrum”, TMF, 25:3 (1975), 344–357; Theoret. and Math. Phys., 25:3 (1975), 1176–1184

Citation in format AMSBIB
\Bibitem{Bel75}
\by E.~D.~Belokolos
\paper Quantum particle in a~one-dimensional deformed lattice. Estimates of the gaps in the spectrum
\jour TMF
\yr 1975
\vol 25
\issue 3
\pages 344--357
\mathnet{http://mi.mathnet.ru/tmf4079}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=523387}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 25
\issue 3
\pages 1176--1184
\crossref{https://doi.org/10.1007/BF01040126}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4079
  • http://mi.mathnet.ru/eng/tmf/v25/i3/p344

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. E. D. Belokolos, “Quantum particle in a one-dimensional deformed lattice. Dependence of the energy on the quasimomentum”, Theoret. and Math. Phys., 26:1 (1976), 21–25  mathnet  crossref  mathscinet
    2. M. A. Shubin, “Almost periodic functions and partial differential operators”, Russian Math. Surveys, 33:2 (1978), 1–52  mathnet  crossref  mathscinet  zmath
    3. M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russian Math. Surveys, 34:2 (1979), 109–157  mathnet  crossref  mathscinet  zmath
    4. Ya. G. Sinai, “Structure of the spectrum of the Schrödinger operator with almost-periodic potential in the vicinity of its left edge”, Funct. Anal. Appl., 19:1 (1985), 34–39  mathnet  crossref  mathscinet  zmath  isi
    5. E. I. Dinaburg, “Stark effect for a difference Schrödinger operator”, Theoret. and Math. Phys., 78:1 (1989), 50–57  mathnet  crossref  mathscinet  isi
    6. E. I. Dinaburg, “Some questions of the spectral theory of discrete operators with quasiperiodic coefficients”, Russian Math. Surveys, 52:3 (1997), 451–499  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:251
    Full text:74
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019