RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1975, Volume 25, Number 3, Pages 414–418 (Mi tmf4086)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonstationary perturbation theory for a degenerate discrete level

A. L. Kitanin


Abstract: Asymptotical representations is constructed for evolution operator $S(0,-T)P$ at $T\to\infty$ regularized by means of the substitution $H_0\to H_0-i\varepsilon P'$ [1] (non-adiabatic regularisation which does not depend: on time). It is shown that $S(0,-T)P=\Omega\exp (-iQT)R_0+O(e^{-\varepsilon T})$, $Q$ and $\Omega$ being finite operators not depending of $T$ and regular in the neighbourhood $\varepsilon=0$. $Q$ can be interpreted as secular operator and $Q$ as wave operator.

Full text: PDF file (254 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1975, 25:3, 1224–1227

Bibliographic databases:

Received: 11.03.1975

Citation: A. L. Kitanin, “Nonstationary perturbation theory for a degenerate discrete level”, TMF, 25:3 (1975), 414–418; Theoret. and Math. Phys., 25:3 (1975), 1224–1227

Citation in format AMSBIB
\Bibitem{Kit75}
\by A.~L.~Kitanin
\paper Nonstationary perturbation theory for a degenerate discrete level
\jour TMF
\yr 1975
\vol 25
\issue 3
\pages 414--418
\mathnet{http://mi.mathnet.ru/tmf4086}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=496252}
\zmath{https://zbmath.org/?q=an:0324.47009}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 25
\issue 3
\pages 1224--1227
\crossref{https://doi.org/10.1007/BF01040133}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4086
  • http://mi.mathnet.ru/eng/tmf/v25/i3/p414

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. F. Sarry, “Perturbation theory for a degenerate level”, Theoret. and Math. Phys., 41:2 (1979), 1028–1030  mathnet  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:169
    Full text:54
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019