RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2001, Volume 126, Number 2, Pages 196–205 (Mi tmf424)  

This article is cited in 6 scientific papers (total in 6 papers)

Schrödinger operator eigenvalue (resonance) on a zone boundary

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: For a Schrödinger operator with a periodic potential perturbed by a function periodic with respect to two variables and tending to zero with respect to the third variable, conditions are found under which a level (eigenvalue or resonance) falls on a zone boundary. The passage of the level through the boundary under variation of the perturbation magnitude is discussed.

DOI: https://doi.org/10.4213/tmf424

Full text: PDF file (219 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2001, 126:2, 161–168

Bibliographic databases:

Received: 17.01.2000
Revised: 18.08.2000

Citation: Yu. P. Chuburin, “Schrödinger operator eigenvalue (resonance) on a zone boundary”, TMF, 126:2 (2001), 196–205; Theoret. and Math. Phys., 126:2 (2001), 161–168

Citation in format AMSBIB
\Bibitem{Chu01}
\by Yu.~P.~Chuburin
\paper Schr\"odinger operator eigenvalue (resonance) on a zone boundary
\jour TMF
\yr 2001
\vol 126
\issue 2
\pages 196--205
\mathnet{http://mi.mathnet.ru/tmf424}
\crossref{https://doi.org/10.4213/tmf424}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1863080}
\zmath{https://zbmath.org/?q=an:1035.81019}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 126
\issue 2
\pages 161--168
\crossref{https://doi.org/10.1023/A:1005287525569}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000170245600002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf424
  • https://doi.org/10.4213/tmf424
  • http://mi.mathnet.ru/eng/tmf/v126/i2/p196

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. S. Smetanina, “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izv. IMI UdGU, 2002, no. 3(26), 99–114  mathnet
    2. Yu. P. Chuburin, “The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field”, Theoret. and Math. Phys., 134:2 (2003), 212–221  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Chuburin, YP, “On levels of a weakly perturbed periodic Schrodinger operator”, Communications in Mathematical Physics, 249:3 (2004), 497  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, Theoret. and Math. Phys., 143:3 (2005), 836–847  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. N. I. Pletnikova, “Ob urovnyakh operatora Shredingera na granitse nepreryvnogo spektra”, Izv. IMI UdGU, 2005, no. 1(31), 107–112  mathnet
    6. M. S. Smetanina, “Asimptotika urovnei operatora Shrëdingera dlya kristallicheskoi plenki s nelokalnym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:4 (2018), 462–473  mathnet  crossref  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:262
    Full text:87
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019