RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1976, Volume 28, Number 3, Pages 308–319 (Mi tmf4263)  

This article is cited in 12 scientific papers (total in 12 papers)

Combined algebra for quantum and classical mechanics

Yu. M. Shirokov


Abstract: For a canonical Hamiltonian system, an algebra is constructed in which all the observables are realized by ordinary functions $A(p,q)$ of the momenta and coordinates and are simultaneously classical and quantum observables. The classical and quantum states are realized by density matrices $\rho(p,q)$ that are either coincident for the quantum and the classical theory or exist only in one of the theories. The entire difference between the quantum and classical descriptions reduces to the difference between the quantum and classical operations of multiplication of observables, their Poisson brackets, and thus between the evolutions of the observables (or states) in time. A transition from the quantum to the classical theory is proposed and investigated in which the observables and states do not change and the operations of quantum multiplication and taking of the quantum Poisson brackets go over as $\hbar\to0$ into the corresponding classical operations in a perfectly definite sense. It is shown that the quantum operations are infinitely differentiable with respect to $\hbar$ at zero. The transition to classical mechanics is possible for all observables but not for all states. Pure quantum states become mixed in the classical case. The quantum corrections destroy the Hamiltonicity of the classical equations of motion. For the space of observables a topology which admits unbounded operators is used.

Full text: PDF file (1269 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1976, 28:3, 806–813

Bibliographic databases:

Received: 04.01.1976

Citation: Yu. M. Shirokov, “Combined algebra for quantum and classical mechanics”, TMF, 28:3 (1976), 308–319; Theoret. and Math. Phys., 28:3 (1976), 806–813

Citation in format AMSBIB
\Bibitem{Shi76}
\by Yu.~M.~Shirokov
\paper Combined algebra for quantum and classical mechanics
\jour TMF
\yr 1976
\vol 28
\issue 3
\pages 308--319
\mathnet{http://mi.mathnet.ru/tmf4263}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=522660}
\zmath{https://zbmath.org/?q=an:0335.70024}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 28
\issue 3
\pages 806--813
\crossref{https://doi.org/10.1007/BF01029172}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4263
  • http://mi.mathnet.ru/eng/tmf/v28/i3/p308

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. M. Shirokov, “Different quantizations and different classical limits of quantum theory”, Theoret. and Math. Phys., 29:3 (1976), 1091–1100  mathnet  crossref  mathscinet
    2. G. K. Tolokonnikov, “Associative Hamiltonian algebras”, Theoret. and Math. Phys., 31:2 (1977), 441–445  mathnet  crossref  mathscinet  zmath
    3. Yu. M. Shirokov, “Perturbation theory with respect to Planck's constant”, Theoret. and Math. Phys., 31:3 (1977), 488–492  mathnet  crossref
    4. S. N. Sokolov, “Is relativistic invariance preserved in the limit $\hbar\to 0$?”, Theoret. and Math. Phys., 32:3 (1977), 790–794  mathnet  crossref  mathscinet
    5. Yu. M. Shirokov, “On admissible forms of canonical mechanics”, Theoret. and Math. Phys., 30:1 (1977), 3–6  mathnet  crossref  mathscinet  zmath
    6. Yu. M. Shirokov, “Unified formalism for quantum and classical scattering theories”, Theoret. and Math. Phys., 38:3 (1979), 206–211  mathnet  crossref  mathscinet
    7. M. A. Antonets, “Classical limit of Weyl quantization”, Theoret. and Math. Phys., 38:3 (1979), 219–228  mathnet  crossref  mathscinet
    8. Yu. M. Shirokov, “Algebra of one-dimensional generalized functions”, Theoret. and Math. Phys., 39:3 (1979), 471–477  mathnet  crossref  mathscinet  zmath  isi
    9. G. K. Tolokonnikov, “Algebras of observables of nearly canonical physical theories. II”, Theoret. and Math. Phys., 61:2 (1984), 1072–1077  mathnet  crossref  mathscinet  isi
    10. V. G. Budanov, “Methods of Weyl representation of the phase space and canonical transformations. I”, Theoret. and Math. Phys., 61:3 (1984), 1183–1195  mathnet  crossref  mathscinet  isi
    11. Man'ko, O, “Classical mechanics is not the h -> 0 limit of quantum mechanics”, Journal of Russian Laser Research, 25:5 (2004), 477  crossref  isi
    12. Man'ko, OV, “Probability representation of classical states”, Journal of Russian Laser Research, 26:6 (2005), 429  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:326
    Full text:139
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019