RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 1983, том 54, номер 1, страницы 124–129 (Mi tmf4369)  

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

О вычислении многопетлевых диаграмм теории возмущений

Н. И. Усюкина


Аннотация: Сформулирован ряд тождеств для полууникальных вершин и полууникальных треугольников, входящих в диаграммы теории возмущений с безмассовыми скалярными частицами. Использование таких тождеств дает возможность развить редукционную схему, позволяющую получить ответ для многопетлевых диаграмм без разложения в бесконечные ряды по полиномам Гегенбауэра и без использования операции дифференцирования, приводящей к дополнительным кинематическим усложнениям, что существенно упрощает вычисление многопетлевых диаграмм теории возмущений.

Полный текст: PDF файл (544 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 1983, 54:1, 78–81

Реферативные базы данных:

Поступило в редакцию: 29.04.1982

Образец цитирования: Н. И. Усюкина, “О вычислении многопетлевых диаграмм теории возмущений”, ТМФ, 54:1 (1983), 124–129; Theoret. and Math. Phys., 54:1 (1983), 78–81

Цитирование в формате AMSBIB
\RBibitem{Usy83}
\by Н.~И.~Усюкина
\paper О~вычислении многопетлевых диаграмм теории возмущений
\jour ТМФ
\yr 1983
\vol 54
\issue 1
\pages 124--129
\mathnet{http://mi.mathnet.ru/tmf4369}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 1
\pages 78--81
\crossref{https://doi.org/10.1007/BF01017127}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983RF77900010}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf4369
  • http://mi.mathnet.ru/rus/tmf/v54/i1/p124

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Д. И. Казаков, “Вычисление фейнмановских интегралов методом “уникальностей””, ТМФ, 58:3 (1984), 343–353  mathnet  mathscinet; D. I. Kazakov, “Calculation of Feynman diagrams by the “Uniqueness” method”, Theoret. and Math. Phys., 58:3 (1984), 223–230  crossref  isi
    2. С. Г. Горишний, А. П. Исаев, “Об одном подходе к вычислению многопетлевых безмассовых фейнмановских интегралов”, ТМФ, 62:3 (1985), 345–358  mathnet  mathscinet; S. G. Gorishnii, A. P. Isaev, “An approach to the calculation of many-loop massless Feynman integrals”, Theoret. and Math. Phys., 62:3 (1985), 232–240  crossref  isi
    3. Д. И. Казаков, А. В. Котиков, “Метод уникальностей: многопетлевые вычисления в квантовой хромодинамике”, ТМФ, 73:3 (1987), 348–361  mathnet; D. I. Kazakov, A. V. Kotikov, “Uniqueness method: Multiloop calculations in QCD”, Theoret. and Math. Phys., 73:3 (1987), 1264–1274  crossref  isi
    4. Н. И. Усюкина, “Алгоритм для вычисления безмассовых фейнмановских диаграмм”, ТМФ, 79:1 (1989), 63–71  mathnet  mathscinet; N. I. Usyukina, “Algorithm for calculating massless Feynman diagrams”, Theoret. and Math. Phys., 79:1 (1989), 385–391  crossref  isi
    5. Н. И. Усюкина, “Вычисление многопетлевых диаграмм произвольных порядков”, ТМФ, 87:3 (1991), 414–421  mathnet; N. I. Usyukina, “Calculation of multiloop diagrams of arbitrary orders”, Theoret. and Math. Phys., 87:3 (1991), 627–632  crossref  isi
    6. Н. И. Усюкина, “Вычисление в пяти петлях многопетлевой диаграммы специального вида”, ТМФ, 88:1 (1991), 14–16  mathnet; N. I. Usyukina, “Calculation in five loops of a multiloop diagram of special form”, Theoret. and Math. Phys., 88:1 (1991), 683–685  crossref  isi
    7. Э. Э. Боос, А. И. Давыдычев, “Метод вычисления массивных фейнмановских интегралов”, ТМФ, 89:1 (1991), 56–72  mathnet  mathscinet; E. E. Boos, A. I. Davydychev, “A method of calculating massive Feynman integrals”, Theoret. and Math. Phys., 89:1 (1991), 1052–1064  crossref  isi
    8. И. Гонсалес, И. Н. Кондрашук, “Четырехточечные лестничные диаграммы в нецелом числе измерений”, ТМФ, 177:2 (2013), 276–305  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. Gonzalez, I. Kondrashuk, “Box ladders in a noninteger dimension”, Theoret. and Math. Phys., 177:2 (2013), 1515–1539  crossref  isi  elib
    9. С. Тебер, А. В. Котиков, “Метод уникальностей и оптическая проводимость графена: новое применение мощной техники многопетлевых вычислений”, ТМФ, 190:3 (2017), 519–532  mathnet  crossref  mathscinet  adsnasa  elib; S. Teber, A. V. Kotikov, “The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations”, Theoret. and Math. Phys., 190:3 (2017), 446–457  crossref  isi
    10. Gonzalez I. Kondrashuk I. Notte-Cuello E.A. Parra-Ferrada I., “Multi-Fold Contour Integrals of Certain Ratios of Euler Gamma Functions From Feynman Diagrams: Orthogonality of Triangles”, Anal. Math. Phys., 8:4 (2018), 589–602  crossref  mathscinet  zmath  isi  scopus
    11. Kotikov A.V. Teber S., “Multi-Loop Techniques For Massless Feynman Diagram Calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:254
    Полный текст:97
    Литература:24
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020