RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1971, Volume 8, Number 3, Pages 354–358 (Mi tmf4412)  

On the asymptotic properties of the $K_L^0+p\to K_S^0+p$ amplitude

Nguyen Van Hieu


Abstract: A study is made of the relationship between the imaginary and the real part of the $K_L^0+p\to K_S^0+p$ amplitude at high energies $s\to\infty$ and $t =0$.

Full text: PDF file (331 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1971, 8:3, 885–888

Received: 04.09.1970

Citation: Nguyen Van Hieu, “On the asymptotic properties of the $K_L^0+p\to K_S^0+p$ amplitude”, TMF, 8:3 (1971), 354–358; Theoret. and Math. Phys., 8:3 (1971), 885–888

Citation in format AMSBIB
\Bibitem{Ngu71}
\by Nguyen Van Hieu
\paper On the asymptotic properties of the $K_L^0+p\to K_S^0+p$ amplitude
\jour TMF
\yr 1971
\vol 8
\issue 3
\pages 354--358
\mathnet{http://mi.mathnet.ru/tmf4412}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 8
\issue 3
\pages 885--888
\crossref{https://doi.org/10.1007/BF01029344}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4412
  • http://mi.mathnet.ru/eng/tmf/v8/i3/p354

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:121
    Full text:50
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019