RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1971, Volume 8, Number 3, Pages 369–380 (Mi tmf4414)  

This article is cited in 4 scientific papers (total in 4 papers)

Kirkwood–Salzburg equations for the coefficient functions of the $S$ matrix

D. Ya. Petrina, V. I. Skripnik


Abstract: A system of Kirkwood–Salzburg type equations is obtained for the coefficient functions of the $S$ matrix in the Euclidean region. The existence of solutions of the equations for the coefficient functions in the case of an infinite volume is proved for models of a real scalar field with bounded nonlinear Lagrangians. A study is made of the analogy between Euclidean quanturn field theory and statistical mechanics.

Full text: PDF file (962 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1971, 8:3, 896–904

Received: 07.12.1970

Citation: D. Ya. Petrina, V. I. Skripnik, “Kirkwood–Salzburg equations for the coefficient functions of the $S$ matrix”, TMF, 8:3 (1971), 369–380; Theoret. and Math. Phys., 8:3 (1971), 896–904

Citation in format AMSBIB
\Bibitem{PetSkr71}
\by D.~Ya.~Petrina, V.~I.~Skripnik
\paper Kirkwood--Salzburg equations for the coefficient functions of the $S$ matrix
\jour TMF
\yr 1971
\vol 8
\issue 3
\pages 369--380
\mathnet{http://mi.mathnet.ru/tmf4414}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 8
\issue 3
\pages 896--904
\crossref{https://doi.org/10.1007/BF01029346}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4414
  • http://mi.mathnet.ru/eng/tmf/v8/i3/p369

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Basuev, “Convergence of the perturbation series for a nonlocal nonpolynomial theory $m^2/\Lambda$”, Theoret. and Math. Phys., 16:3 (1973), 835–842  mathnet  crossref  mathscinet
    2. S. S. Ivanov, D. Ya. Petrina, A. L. Rebenko, “$S$ matrix in constructive quantum field theory”, Theoret. and Math. Phys., 23:2 (1975), 422–434  mathnet  crossref  mathscinet
    3. V. I. Skripnik, “Construction of transfer matrix for continuous one-dimensional many-component Gibbs systems with regular two-body interaction potential”, Theoret. and Math. Phys., 29:3 (1976), 1100–1108  mathnet  crossref  mathscinet
    4. A. L. Rebenko, “Mathematical foundations of equilibrium classical statistical mechanics of charged particles”, Russian Math. Surveys, 43:3 (1988), 65–116  mathnet  crossref  mathscinet  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:224
    Full text:70
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019