RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1984, Volume 58, Number 1, Pages 121–136 (Mi tmf4435)  

This article is cited in 4 scientific papers (total in 4 papers)

Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model

A. G. Basuev


Abstract: Convergence of contour expansions is proved for $\operatorname{Re}\beta\ge\beta_1$ and arbitrary external fields. It is also shown that the cluster functions are holomorphic with respect to the external fields in regions in which the fields have constant sign. The results are based on the construction of uniform estimates for the considered expansions in the neighborhood of the physical region of variation of the external fields.

Full text: PDF file (1373 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1984, 58:1, 80–91

Bibliographic databases:

Received: 19.05.1983

Citation: A. G. Basuev, “Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model”, TMF, 58:1 (1984), 121–136; Theoret. and Math. Phys., 58:1 (1984), 80–91

Citation in format AMSBIB
\Bibitem{Bas84}
\by A.~G.~Basuev
\paper Mayer expansions for gas of contours at low temperatures and in arbitrary external fields for the multicomponent ising model
\jour TMF
\yr 1984
\vol 58
\issue 1
\pages 121--136
\mathnet{http://mi.mathnet.ru/tmf4435}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=740218}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 1
\pages 80--91
\crossref{https://doi.org/10.1007/BF01031038}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984TA24500010}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4435
  • http://mi.mathnet.ru/eng/tmf/v58/i1/p121

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Basuev, “Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states”, Theoret. and Math. Phys., 58:2 (1984), 171–182  mathnet  crossref  mathscinet  isi
    2. A. G. Basuev, “Hamiltonian of the phase separation border and phase transitions of the first kind. I”, Theoret. and Math. Phys., 64:1 (1985), 716–734  mathnet  crossref  mathscinet  isi
    3. S. N. Isakov, “Phase diagrams and singularity at the point of a phase transition of the first kind in lattice gas models”, Theoret. and Math. Phys., 71:3 (1987), 638–648  mathnet  crossref  mathscinet  isi
    4. A. G. Basuev, “Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem”, Theoret. and Math. Phys., 153:1 (2007), 1434–1457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:171
    Full text:42
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019