Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1971, Volume 9, Number 2, Pages 211–231 (Mi tmf4453)  

This article is cited in 7 scientific papers (total in 7 papers)

Constructive field theory: Thirring model interaction $(\widetilde\psi\gamma^{\mu}\widetilde\psi)_2^2$. I. Local field

I. V. Volovich, V. N. Sushko


Abstract: Self-interacting ferrhion field with a zero rest mass in two-dimensional space-time is investigated by methods of the so called constructive field theory. The renormalized Hamiltonian including cut-off formfactors and counter-terms of a definite structure and the Heisenberg field corresponding to this Hamiltonian are constructed. The space of physical particles is explicitly described, in which both the Hamiltonian and the Heisenberg field admit the removal of the ultraviolet eut-off. The Wightman functions corresponding to the local field obtained admit the removal of the spatial cut-off. The form of the counter-terms is found, with which the limit Wightman functions coincide with those constructed by Klaiber.

Full text: PDF file (2145 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1971, 9:2, 1086–1100

Received: 11.03.1971

Citation: I. V. Volovich, V. N. Sushko, “Constructive field theory: Thirring model interaction $(\widetilde\psi\gamma^{\mu}\widetilde\psi)_2^2$. I. Local field”, TMF, 9:2 (1971), 211–231; Theoret. and Math. Phys., 9:2 (1971), 1086–1100

Citation in format AMSBIB
\Bibitem{VolSus71}
\by I.~V.~Volovich, V.~N.~Sushko
\paper Constructive field theory: Thirring model interaction $(\widetilde\psi\gamma^{\mu}\widetilde\psi)_2^2$. I.~Local field
\jour TMF
\yr 1971
\vol 9
\issue 2
\pages 211--231
\mathnet{http://mi.mathnet.ru/tmf4453}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 9
\issue 2
\pages 1086--1100
\crossref{https://doi.org/10.1007/BF01036945}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4453
  • http://mi.mathnet.ru/eng/tmf/v9/i2/p211

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Ya. Aref'eva, “Renormalized scattering theory for Yukawa model II. Wave operators”, Theoret. and Math. Phys., 15:2 (1973), 467–476  mathnet  crossref
    2. A. K. Pogrebkov, “Thirring model. Asymptotic fields and $S$ matrix $\pm2\pi\surd{\overline{2n}}$, $n=0,1,2,…$”, Theoret. and Math. Phys., 17:1 (1973), 977–983  mathnet  crossref  mathscinet
    3. A. K. Pogrebkov, V. N. Sushko, “Hamiltonian theory of the interaction of a massive vector field with a massless fermion field in two-dimensional spacetime: The $(\tilde\Psi\gamma^{\mu}\Psi B_{\mu})_2$ interaction”, Theoret. and Math. Phys., 22:2 (1975), 110–122  mathnet  crossref  mathscinet
    4. A. K. Pogrebkov, V. N. Sushko, “Quantization of the $(\sin\varphi)_2$ interaction in terms of fermion variables”, Theoret. and Math. Phys., 24:3 (1975), 935–937  mathnet  crossref
    5. A. K. Pogrebkov, V. N. Sushko, “Quantum solitons and their connection with fermion fields for the $(\sin\varphi)_2$”, Theoret. and Math. Phys., 26:3 (1976), 286–289  mathnet  crossref  mathscinet
    6. V. N. Sushko, “Fermionization of the $(\sin\varphi)_2$ interaction in a box”, Theoret. and Math. Phys., 37:2 (1978), 949–969  mathnet  crossref  mathscinet
    7. D. Ts. Stoyanov, L. K. Khadzhiivanov, “Theory of Wightman functions in the thirring model”, Theoret. and Math. Phys., 46:3 (1981), 236–242  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:377
    Full text:123
    References:37
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021