RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1971, Volume 9, Number 3, Pages 318–322 (Mi tmf4489)  

On weak convergence in an infinite tensor product of Hilbert spaces

I. M. Burban


Abstract: Investigation has been made of weakly convergent operator seria in the non-complete infinite tensor product of Hilbert spaces. It is proved that in the case when the dense domain exists, on which the sequences of partial sums of positive operators converge weakly, the limit operator is essentially self-adjoint.

Full text: PDF file (391 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1971, 9:3, 1165–1168

Bibliographic databases:

Received: 25.01.1971

Citation: I. M. Burban, “On weak convergence in an infinite tensor product of Hilbert spaces”, TMF, 9:3 (1971), 318–322; Theoret. and Math. Phys., 9:3 (1971), 1165–1168

Citation in format AMSBIB
\Bibitem{Bur71}
\by I.~M.~Burban
\paper On weak convergence in an infinite tensor product of Hilbert spaces
\jour TMF
\yr 1971
\vol 9
\issue 3
\pages 318--322
\mathnet{http://mi.mathnet.ru/tmf4489}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=470695}
\zmath{https://zbmath.org/?q=an:0247.47024}
\transl
\jour Theoret. and Math. Phys.
\yr 1971
\vol 9
\issue 3
\pages 1165--1168
\crossref{https://doi.org/10.1007/BF01043405}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4489
  • http://mi.mathnet.ru/eng/tmf/v9/i3/p318

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:222
    Full text:73
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020