RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2001, Volume 127, Number 2, Pages 284–303 (Mi tmf458)  

This article is cited in 2 scientific papers (total in 2 papers)

Coulomb Gas Representation for Rational Solutions of the Painlevé Equations

V. G. Marikhin

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We consider rational solutions for a number of dynamic systems of the type of the nonlinear Schrödinger equation, in particular, the Levi system. We derive the equations for the dynamics of poles and Bäcklund transformations for these solutions. We show that these solutions can be reduced to rational solutions of the Painlevé IV equation, with the equations for the pole dynamics becoming the stationary equations for the two-dimensional Coulomb gas in a parabolic potential. The corresponding Coulomb systems are derived for the Painlevé II-VI equations. Using the Hamiltonian formalism, we construct the spin representation of the Painlevé equations.

DOI: https://doi.org/10.4213/tmf458

Full text: PDF file (268 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2001, 127:2, 646–663

Bibliographic databases:

Received: 02.11.2000
Revised: 04.01.2001

Citation: V. G. Marikhin, “Coulomb Gas Representation for Rational Solutions of the Painlevé Equations”, TMF, 127:2 (2001), 284–303; Theoret. and Math. Phys., 127:2 (2001), 646–663

Citation in format AMSBIB
\Bibitem{Mar01}
\by V.~G.~Marikhin
\paper Coulomb Gas Representation for Rational Solutions of the Painlev\'e Equations
\jour TMF
\yr 2001
\vol 127
\issue 2
\pages 284--303
\mathnet{http://mi.mathnet.ru/tmf458}
\crossref{https://doi.org/10.4213/tmf458}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1863564}
\zmath{https://zbmath.org/?q=an:1017.33010}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 127
\issue 2
\pages 646--663
\crossref{https://doi.org/10.1023/A:1010449603754}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000170547800004}


Linking options:
  • http://mi.mathnet.ru/eng/tmf458
  • https://doi.org/10.4213/tmf458
  • http://mi.mathnet.ru/eng/tmf/v127/i2/p284

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Clarkson, PA, “The fourth Painlevé equation and associated special polynomials”, Journal of Mathematical Physics, 44:11 (2003), 5350  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Filipuk, GV, “The symmetric fourth Painlevé hierarchy and associated special polynomials”, Studies in Applied Mathematics, 121:2 (2008), 157  crossref  mathscinet  zmath  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:327
    Full text:94
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019