RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1985, Volume 63, Number 1, Pages 11–31 (Mi tmf4743)  

This article is cited in 8 scientific papers (total in 8 papers)

Maxwell–Bloch equation and the inverse scattering method

I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov


Abstract: The inverse scattering method is used to construct general solutions of the Maxwell–Bloch system, these solutions being determined by specification of the polarization as $t\to\infty$. The solutions are classified. An approximate solution is obtained for the mixed boundary-value problem for the Maxwell–Bloch system describing the phenomenon of superfluorescence (generation of a pulse from initial fluctuations of the polarization in a mirrorless laser).

Full text: PDF file (1877 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1985, 63:1, 328–343

Bibliographic databases:

Received: 01.03.1984

Citation: I. R. Gabitov, V. E. Zakharov, A. V. Mikhailov, “Maxwell–Bloch equation and the inverse scattering method”, TMF, 63:1 (1985), 11–31; Theoret. and Math. Phys., 63:1 (1985), 328–343

Citation in format AMSBIB
\Bibitem{GabZakMik85}
\by I.~R.~Gabitov, V.~E.~Zakharov, A.~V.~Mikhailov
\paper Maxwell--Bloch equation and the inverse scattering method
\jour TMF
\yr 1985
\vol 63
\issue 1
\pages 11--31
\mathnet{http://mi.mathnet.ru/tmf4743}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=794469}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 1
\pages 328--343
\crossref{https://doi.org/10.1007/BF01017833}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1985ATJ6000002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4743
  • http://mi.mathnet.ru/eng/tmf/v63/i1/p11

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Manakov, V. Yu. Novokshenov, “Complete asymptotic representation of an electromagnetic pulse in a long two-level amplifier”, Theoret. and Math. Phys., 69:1 (1986), 987–997  mathnet  crossref  zmath  isi
    2. O. M. Kiselev, “Solution of Goursat problem for Maxwell–Bloch equations”, Theoret. and Math. Phys., 98:1 (1994), 20–26  mathnet  crossref  mathscinet  zmath  isi
    3. Pavle Saksida, “On the Generalized Maxwell–Bloch Equations”, SIGMA, 2 (2006), 038, 14 pp.  mathnet  crossref  mathscinet  zmath
    4. Quantum Electron., 40:9 (2010), 756–781  mathnet  crossref  adsnasa  isi  elib
    5. V. P. Kotlyarov, E. A. Moskovchenko, “Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening”, Zhurn. matem. fiz., anal., geom., 10:3 (2014), 328–349  mathnet  crossref  mathscinet
    6. Vl. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, V. V. Kocharovsky, “Superradiance: the principles of generation and implementation in lasers”, Phys. Usp., 60:4 (2017), 345–384  mathnet  crossref  crossref  adsnasa  isi  elib
    7. M. S. Filipkovska, V. P. Kotlyarov, E. A. Melamedova (Moskovchenko), “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, Zhurn. matem. fiz., anal., geom., 13:2 (2017), 119–153  mathnet  crossref
    8. Vladimir P. Kotlyarov, “A Matrix Baker–Akhiezer Function Associated with the Maxwell–Bloch Equations and their Finite-Gap Solutions”, SIGMA, 14 (2018), 082, 27 pp.  mathnet  crossref
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:1533
    Full text:451
    References:51
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019