RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1985, Volume 63, Number 2, Pages 208–218 (Mi tmf4756)  

This article is cited in 3 scientific papers (total in 3 papers)

$R^*$ operation in the minimal subtraction scheme

V. A. Smirnov, K. G. Chetyrkin


Abstract: The formalism of the $R^*$ operation [1] is developed; it generalizes the $R$ operation and eliminates both ultraviolet and infrared divergences. By explicit formulation of the concept of an infrared counterterm it is shown that the calculation of an arbitrary $(\Re+1)$-loop ultraviolet or infrared eounterterm in the minimal subtraction scheme can be reduced to the finding of the divergent and finite parts of certain massless Feynman integrals that depend only on a single external momentum with number of loops not exceeding $\Re$.

Full text: PDF file (1181 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1985, 63:2, 462–469

Bibliographic databases:

Received: 08.06.1984

Citation: V. A. Smirnov, K. G. Chetyrkin, “$R^*$ operation in the minimal subtraction scheme”, TMF, 63:2 (1985), 208–218; Theoret. and Math. Phys., 63:2 (1985), 462–469

Citation in format AMSBIB
\Bibitem{SmiChe85}
\by V.~A.~Smirnov, K.~G.~Chetyrkin
\paper $R^*$ operation in the minimal subtraction scheme
\jour TMF
\yr 1985
\vol 63
\issue 2
\pages 208--218
\mathnet{http://mi.mathnet.ru/tmf4756}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=800064}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 2
\pages 462--469
\crossref{https://doi.org/10.1007/BF01017902}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1985AVT5500004}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4756
  • http://mi.mathnet.ru/eng/tmf/v63/i2/p208

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. G. Chetyrkin, “Operator expansions in the minimal subtraction scheme. II. Explicit formulas for coefficient functions”, Theoret. and Math. Phys., 76:2 (1988), 809–817  mathnet  crossref  mathscinet  isi
    2. K. G. Chetyrkin, “Operator expansions in the minimal subtraction scheme. I. The gluing method”, Theoret. and Math. Phys., 75:1 (1988), 346–356  mathnet  crossref  mathscinet  isi
    3. V. A. Smirnov, “Wilson expansion in minimal subtraction scheme”, Theoret. and Math. Phys., 78:1 (1989), 100–105  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:162
    Full text:60
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019