RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1989, Volume 78, Number 3, Pages 422–433 (Mi tmf4797)  

This article is cited in 10 scientific papers (total in 10 papers)

Nonasymptotic form of the recursion relations of the three-dimensional Ising model

M. P. Kozlovskii


Abstract: Approximate recurrence relations (RR) in the three-dimensional Ising model are obtained in the form of rapidly convergent series. The representation of RR in the form of nonasymptotical series is related to rejecting the traditional perturbation theory based on the Gaussian measure density. Using the RR obtained, value of the critical exponent of the correlation length $\nu$ is calculated. It is shown that if higher nongaussian basic measures are used then the difference form of the RR implies independence of the critical exponent $\nu$ of $s$ for $s>2$ ($s$ is the parameter of the layer structure of the phase space). The results obtained make it possible to obtain explicit expressions for thermodynamic functions in the neighbourhood of the phase transition point.

Full text: PDF file (1222 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1989, 78:3, 300–308

Bibliographic databases:

Received: 29.07.1987

Citation: M. P. Kozlovskii, “Nonasymptotic form of the recursion relations of the three-dimensional Ising model”, TMF, 78:3 (1989), 422–433; Theoret. and Math. Phys., 78:3 (1989), 300–308

Citation in format AMSBIB
\Bibitem{Koz89}
\by M.~P.~Kozlovskii
\paper Nonasymptotic form of~the recursion relations of~the three-dimensional Ising model
\jour TMF
\yr 1989
\vol 78
\issue 3
\pages 422--433
\mathnet{http://mi.mathnet.ru/tmf4797}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=996225}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 3
\pages 300--308
\crossref{https://doi.org/10.1007/BF01017668}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1989AU78400011}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4797
  • http://mi.mathnet.ru/eng/tmf/v78/i3/p422

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. P. Kozlovskii, I. V. Pylyuk, I. R. Yukhnovskii, “Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. I. The case $T>T_c$”, Theoret. and Math. Phys., 87:2 (1991), 540–556  mathnet  crossref  mathscinet  zmath  isi
    2. V. V. Dukhovyi, M. P. Kozlovskii, I. V. Pylyuk, “Equation of state in 3-D Ising model from microscopic level calculation”, Theoret. and Math. Phys., 107:2 (1996), 650–666  mathnet  crossref  crossref  zmath  isi
    3. I. V. Pylyuk, “Critical behavior of the three-dimensional Ising sistem: Dependence of themodynamic characteristics on microscopic parameters”, Theoret. and Math. Phys., 117:3 (1998), 1459–1482  mathnet  crossref  crossref  zmath  isi
    4. Pylyuk, IV, “Description of critical behavior of Ising ferromagnet in the rho(6) model approximation taking into account confluent correction. I. Region above the phase transition point”, Low Temperature Physics, 25:11 (1999), 877  crossref  isi
    5. Yukhnovskii, IR, “Study of the critical behaviour of three-dimensional Ising-like systems on the basis of the rho(6) model with allowance for microscopic parameters: II. Low-temperature region”, Journal of Physics-Condensed Matter, 14:45 (2002), 11701  crossref  isi
    6. Yukhnovskii, IR, “Study of the critical behaviour of three-dimensional Ising-like systems on the basis of the rho(6) model with allowance for microscopic parameters: I. High-temperature region”, Journal of Physics-Condensed Matter, 14:43 (2002), 10113  crossref  isi
    7. Yukhnovskii, IR, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters”, Physical Review B, 66:13 (2002), 134410  crossref  isi
    8. Pylyuk I.V., Kozlovskii M.P., “Calculation of free energy of a three-dimensional Ising-like system in an external field with the use of the rho(6) model”, Physica a-Statistical Mechanics and its Applications, 389:23 (2010), 5390–5401  crossref  isi
    9. Pylyuk I.V., Ulyak M.V., “Critical Behaviour of a 3D Ising-Like System in the Rho(6) Model Approximation: Role of the Correction for the Potential Averaging”, Condens. Matter Phys., 15:4 (2012)  crossref  isi
    10. Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V., “Critical Behavior of a 3D Ising-Like System in the Higher Non-Gaussian Approximation: Inclusion of the Critical Exponent of the Correlation Function”, Int. J. Mod. Phys. B, 28:24 (2014), 1450160  crossref  isi
  • Number of views:
    This page:138
    Full text:48
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019