RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1989, Volume 78, Number 3, Pages 475–479 (Mi tmf4803)  

This article is cited in 1 scientific paper (total in 1 paper)

String operator formalism and functional integral in the holomorphic representation

A. S. Losev, A. Yu. Morozov, A. A. Roslyi, S. L. Shatashvili


Abstract: Connection between the continual integral over open Riemann surfaces [1] and theoperator formalism on closed Riemann surfaces [2] is discussed. States of the operator formalism are the holomorphic representation of the continual integral.

Full text: PDF file (443 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1989, 78:3, 337–340

Bibliographic databases:

Received: 17.10.1988

Citation: A. S. Losev, A. Yu. Morozov, A. A. Roslyi, S. L. Shatashvili, “String operator formalism and functional integral in the holomorphic representation”, TMF, 78:3 (1989), 475–479; Theoret. and Math. Phys., 78:3 (1989), 337–340

Citation in format AMSBIB
\Bibitem{LosMorRos89}
\by A.~S.~Losev, A.~Yu.~Morozov, A.~A.~Roslyi, S.~L.~Shatashvili
\paper String operator formalism and functional integral in~the holomorphic representation
\jour TMF
\yr 1989
\vol 78
\issue 3
\pages 475--479
\mathnet{http://mi.mathnet.ru/tmf4803}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=996227}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 78
\issue 3
\pages 337--340
\crossref{https://doi.org/10.1007/BF01017674}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1989AU78400017}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4803
  • http://mi.mathnet.ru/eng/tmf/v78/i3/p475

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Russian Math. Surveys, 46:4 (1991), 135–163  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:426
    Full text:161
    References:45
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020