General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 1985, Volume 63, Number 3, Pages 440–457 (Mi tmf4847)  

This article is cited in 11 scientific papers (total in 11 papers)

Method of two-time Green's functions in molecular hydrodynamics

Yu. A. Tserkovnikov

Abstract: The hierarchy of equations for the sequence of irreducible two-time thermal Green's functions is used to construct correlation functions for the densities of the conserved quantities (particle number, energy, and momentum) that are valid in both the hydrodynamic region as well as at high frequencies. Equations are obtained that in a self-consistent manner determine from “first principles” the transport coefficients of a system of interacting particles and the static susceptibilities that appear as initial data in the equations of the hierarchy.

Full text: PDF file (1737 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1985, 63:3, 619–630

Bibliographic databases:

Document Type: Article
Received: 24.08.1984

Citation: Yu. A. Tserkovnikov, “Method of two-time Green's functions in molecular hydrodynamics”, TMF, 63:3 (1985), 440–457; Theoret. and Math. Phys., 63:3 (1985), 619–630

Citation in format AMSBIB
\by Yu.~A.~Tserkovnikov
\paper Method of two-time Green's functions in molecular hydrodynamics
\jour TMF
\yr 1985
\vol 63
\issue 3
\pages 440--457
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 3
\pages 619--630

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Tserkovnikov, “The method of two-time Green's functions in the molecular hydrodynamics of a superfluid”, Theoret. and Math. Phys., 69:3 (1986), 1254–1272  mathnet  crossref  isi
    2. D. N. Zubarev, M. V. Tokarchuk, “Nonequilibrium statistical hydrodynamics of ionic systems”, Theoret. and Math. Phys., 70:2 (1987), 164–178  mathnet  crossref  isi
    3. V. I. Lebedev, “Correlation functions and transport coefficients of metastable fluids”, Theoret. and Math. Phys., 78:3 (1989), 325–330  mathnet  crossref  isi
    4. G. O. Balabanyan, “Construction of classical systems of equations and macroscopic asymptotics for the equilibium correlation and Green's functions by means of the nonequilibrium statistical operator method”, Theoret. and Math. Phys., 80:1 (1989), 753–766  mathnet  crossref  mathscinet  isi
    5. Yu. A. Tserkovnikov, “Molecular hydrodynamics of a weakly nonideal nondegenerate Bose gas. I. Green's functions of transverse components of particle flux density”, Theoret. and Math. Phys., 85:1 (1990), 1096–1114  mathnet  crossref  isi
    6. Yu. A. Tserkovnikov, “Molecular hydrodynamics of a weakly nonideal Bose gas. II. Green's functions for longitudinal fluctuations of particle and energy densities”, Theoret. and Math. Phys., 85:2 (1990), 1192–1213  mathnet  crossref  isi
    7. Yu. A. Tserkovnikov, “Molecular hydrodynamics of degenerate weakly nonideal bose gas. I. Generalized equations of two-fluid hydrodynamics”, Theoret. and Math. Phys., 93:3 (1992), 1367–1402  mathnet  crossref  mathscinet  isi
    8. D. N. Zubarev, V. G. Morozov, I. P. Omelyan, M. V. Tokarchuk, “Unification of the kinetic and hydrodynamic approaches in the theory of dense gases and liquids”, Theoret. and Math. Phys., 96:3 (1993), 997–1012  mathnet  crossref  mathscinet  zmath  isi
    9. Yu. A. Tserkovnikov, “Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: II. Equations for pair-interaction systems”, Theoret. and Math. Phys., 119:1 (1999), 511–531  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Yu. A. Tserkovnikov, “A Chain of Equations for Two-Time Irreducible Green Functions in Molecular Hydrodynamics”, Proc. Steklov Inst. Math., 228 (2000), 274–285  mathnet  mathscinet  zmath
    11. B. B. Markiv, I. P. Omelyan, M. V. Tokarchuk, “Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids”, Theoret. and Math. Phys., 154:1 (2008), 75–84  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:189
    Full text:72
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019