RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1987, Volume 71, Number 2, Pages 163–178 (Mi tmf4929)  

This article is cited in 5 scientific papers (total in 5 papers)

Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model

A. B. Zamolodchikov, V. A. Fateev

L. D. Landau Institute for Theoretical Physics, Academy of Sciencies of the USSR

Abstract: A series is constructed of conformal-invariant solutions of two-dimensional quantum field theory which possess global symmetry under the group $S_3$ of permutations of three elements.

Full text: PDF file (1625 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1987, 71:2, 451–462

Bibliographic databases:

Received: 29.11.1985

Citation: A. B. Zamolodchikov, V. A. Fateev, “Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model”, TMF, 71:2 (1987), 163–178; Theoret. and Math. Phys., 71:2 (1987), 451–462

Citation in format AMSBIB
\Bibitem{ZamFat87}
\by A.~B.~Zamolodchikov, V.~A.~Fateev
\paper Representations of the algebra of ``parafermion currents'' of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model
\jour TMF
\yr 1987
\vol 71
\issue 2
\pages 163--178
\mathnet{http://mi.mathnet.ru/tmf4929}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=911665}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 71
\issue 2
\pages 451--462
\crossref{https://doi.org/10.1007/BF01028644}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1987L510600001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf4929
  • http://mi.mathnet.ru/eng/tmf/v71/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bershtein M.A., Fateev V.A., Litvinov A.V., “Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory”, Nuclear Phys B, 847:2 (2011), 413–459  crossref  isi
    2. Gils C. Ardonne E. Trebst S. Huse D.A. Ludwig A.W.W. Troyer M. Wang Z., “Anyonic Quantum Spin Chains: Spin-1 Generalizations and Topological Stability”, Phys. Rev. B, 87:23 (2013)  crossref  isi
    3. Belavin A.A., Bershtein M.A., Feigin B.L., Litvinov A.V., Tarnopolsky G.M., “Instanton Moduli Spaces and Bases in Coset Conformal Field Theory”, Commun. Math. Phys., 319:1 (2013), 269–301  crossref  isi
    4. Flohr M., Koehn M., “What the Characters of Irreducible Subrepresentations of Jordan Cells Can Tell Us About Lcft”, J. Phys. A-Math. Theor., 46:49, SI (2013), 494007  crossref  isi
    5. Itoyama H. Yoshioka R., “Developments of Theory of Effective Prepotential From Extended Seiberg-Witten System and Matrix Models”, Prog. Theor. Exp. Phys., 2015, no. 11, 11B103  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:522
    Full text:202
    References:52
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020