RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1985, Volume 64, Number 2, Pages 323–328 (Mi tmf5000)  

This article is cited in 9 scientific papers (total in 9 papers)

Additional symmetries of the nonlinear Schrödinger equation

A. Yu. Orlov, E. I. Shulman


Abstract: A regular method is obtained for obtaining symmetries of the nonlinear Schrödinger equation that depend explicitly on $x$ and $t$ and also $L-A$ pairs for these symmetries.

Full text: PDF file (591 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1985, 64:2, 862–866

Bibliographic databases:

Received: 16.10.1984

Citation: A. Yu. Orlov, E. I. Shulman, “Additional symmetries of the nonlinear Schrödinger equation”, TMF, 64:2 (1985), 323–328; Theoret. and Math. Phys., 64:2 (1985), 862–866

Citation in format AMSBIB
\Bibitem{OrlShu85}
\by A.~Yu.~Orlov, E.~I.~Shulman
\paper Additional symmetries of the nonlinear Schr\"odinger equation
\jour TMF
\yr 1985
\vol 64
\issue 2
\pages 323--328
\mathnet{http://mi.mathnet.ru/tmf5000}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=826523}
\zmath{https://zbmath.org/?q=an:0596.35082}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 64
\issue 2
\pages 862--866
\crossref{https://doi.org/10.1007/BF01017968}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1985A491800014}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5000
  • http://mi.mathnet.ru/eng/tmf/v64/i2/p323

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics”, Theoret. and Math. Phys., 75:1 (1988), 329–339  mathnet  crossref  mathscinet  zmath  isi
    2. V. E. Adler, “Lie-algebraic approach to nonlocal symmetries of integrable systems”, Theoret. and Math. Phys., 89:3 (1991), 1239–1248  mathnet  crossref  mathscinet  zmath  isi
    3. L. V. Ryzhik, E. I. Shulman, “Symmetry algebra of nonlinear integrable equations”, Theoret. and Math. Phys., 95:1 (1993), 387–392  mathnet  crossref  mathscinet  zmath
    4. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  isi
    5. B. I. Suleimanov, “Influence of weak nonlinearity on the high-frequency asymptotics in caustic rearrangements”, Theoret. and Math. Phys., 98:2 (1994), 132–138  mathnet  crossref  mathscinet  zmath  isi
    6. P. Winternitz, A. Yu. Orlov, “$P_\infty$ algebra of KP, free fermions and 2-cocycle in the Lie algebra of pseudodifferential operators”, Theoret. and Math. Phys., 113:2 (1997), 1393–1417  mathnet  crossref  crossref  mathscinet  isi
    7. V. E. Adler, A. B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theoret. and Math. Phys., 125:3 (2000), 1603–1661  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. Andrei K. Pogrebkov, “Symmetries of the Hirota Difference Equation”, SIGMA, 13 (2017), 053, 14 pp.  mathnet  crossref  mathscinet
    9. B. I. Suleimanov, “Ob analogakh funktsii volnovykh katastrof, yavlyayuschikhsya resheniyami nelineinykh integriruemykh uravnenii”, Differentsialnye uravneniya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 81–95  mathnet  mathscinet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:348
    Full text:146
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020