RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1984, Volume 59, Number 3, Pages 373–387 (Mi tmf5023)  

This article is cited in 2 scientific papers (total in 2 papers)

Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes

V. A. Smirnov


Abstract: An absolutely convergent $\alpha$ representation of analytically and (or) dimensionally regularized Feynman.amplitudes is obtained on different sections of the domain of analyticity with respect to the regularizing parameters. The representation differs from the $\alpha$ representation in the original domain of absolute convergence by the presence in the integrand of an operator $\mathscr R^*$, which has the same structure as the $R^*$ operation that generalizes dimensional renormalization when not only ultraviolet but also infrared poles are present. The operator $\mathscr R^*$ explicitly realizes analytic continuation of the parametric integral and can be expressed in terms of the ultraviolet subtracting operators and also in terms of the infrared subtracting operators that generate a Maclaurin expansion in the coordinate space.

Full text: PDF file (1605 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1984, 59:3, 563–573

Bibliographic databases:

Received: 21.09.1983

Citation: V. A. Smirnov, “Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes”, TMF, 59:3 (1984), 373–387; Theoret. and Math. Phys., 59:3 (1984), 563–573

Citation in format AMSBIB
\Bibitem{Smi84}
\by V.~A.~Smirnov
\paper Absolutely convergent $\alpha$ representation of analytically and dimensionally regularized Feynman amplitudes
\jour TMF
\yr 1984
\vol 59
\issue 3
\pages 373--387
\mathnet{http://mi.mathnet.ru/tmf5023}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=759528}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 59
\issue 3
\pages 563--573
\crossref{https://doi.org/10.1007/BF01018195}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984TY74200005}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5023
  • http://mi.mathnet.ru/eng/tmf/v59/i3/p373

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Anikin, V. A. Smirnov, “The R operation in theories with massless particles”, Theoret. and Math. Phys., 60:1 (1984), 664–670  mathnet  crossref  mathscinet  isi
    2. V. A. Smirnov, K. G. Chetyrkin, “$R^*$ operation in the minimal subtraction scheme”, Theoret. and Math. Phys., 63:2 (1985), 462–469  mathnet  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:159
    Full text:66
    References:12
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019