RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 1988, том 76, номер 2, страницы 184–198 (Mi tmf5047)  

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

Алгебраический анзац Бете для $R$-матрицы Изергина–Корепина

В. О. Тарасов


Аннотация: Предлагается обобщение алгебраического анзаца Бете на случай $R$-матрицы Изергина–Корепина. Для данной $R$-матрицы вычислены простейшие $L$-операторы.

Полный текст: PDF файл (1230 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 1988, 76:2, 793–803

Реферативные базы данных:

Поступило в редакцию: 30.12.1986

Образец цитирования: В. О. Тарасов, “Алгебраический анзац Бете для $R$-матрицы Изергина–Корепина”, ТМФ, 76:2 (1988), 184–198; Theoret. and Math. Phys., 76:2 (1988), 793–803

Цитирование в формате AMSBIB
\RBibitem{Tar88}
\by В.~О.~Тарасов
\paper Алгебраический анзац Бете для $R$-матрицы Изергина--Корепина
\jour ТМФ
\yr 1988
\vol 76
\issue 2
\pages 184--198
\mathnet{http://mi.mathnet.ru/tmf5047}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=965505}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 76
\issue 2
\pages 793--803
\crossref{https://doi.org/10.1007/BF01028578}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1988U240300003}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf5047
  • http://mi.mathnet.ru/rus/tmf/v76/i2/p184

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Kulish, PP, “Creation operators and Bethe vectors of the osp(1/2) Gaudin model”, Journal of Mathematical Physics, 42:10 (2001), 4757  crossref  isi
    2. Kulish, PP, “Trigonometric osp(1 vertical bar 2) Gaudin model”, Journal of Mathematical Physics, 44:2 (2003), 676  crossref  isi
    3. Enriquez, B, “Weight functions and Drinfeld currents”, Communications in Mathematical Physics, 276:3 (2007), 691  crossref  mathscinet  zmath  adsnasa  isi
    4. Nenad Manojlović, Zoltán Nagy, “Construction of the Bethe State for the $\mathrm E_{\tau,\eta}(so_3)$ Elliptic Quantum Group”, SIGMA, 3 (2007), 004, 10 pp.  mathnet  crossref  mathscinet  zmath
    5. А. М. Шапиро, “Три реализации квантовой аффинной алгебры $U_q(A_2^{(2)})$”, ТМФ, 165:2 (2010), 217–232  mathnet  crossref; A. M. Shapiro, “Three realizations of the quantum affine algebra $U_q(A_2^{(2)})$”, Theoret. and Math. Phys., 165:2 (2010), 1421–1434  crossref  isi
    6. Khoroshkin S., Shapiro A., “The weight function for the quantum affine algebra Uq (A(2)((2)))”, J Geom Phys, 60:11 (2010), 1833–1851  crossref  isi
    7. Babujian H.M., Foerster A., Karowski M., “Bethe Ansatz and Exact Form Factors of the O(N) Gross Neveu-Model”, J. High Energy Phys., 2016, no. 2, 042  crossref  isi
    8. Nepomechie R.I. Pimenta R.A., “Algebraic Bethe ansatz for the Temperley?Lieb spin-1 chain”, Nucl. Phys. B, 910 (2016), 885–909  crossref  mathscinet  zmath  isi  elib  scopus
    9. Ahmed I. Nepomechie R.I. Wang Ch., “Quantum Group Symmetries and Completeness For a(2N)((2)) Open Spin Chains”, J. Phys. A-Math. Theor., 50:28 (2017), 284002  crossref  isi
    10. Garbali A. Nienhuis B., “The Dilute Temperley-Lieb O(N=1) Loop Model on a Semi Infinite Strip: the Ground State”, J. Stat. Mech.-Theory Exp., 2017, 043108  crossref  isi
    11. Gerrard A. MacKay N. Regelskis V., “Nested Algebraic Bethe Ansatz For Open Spin Chains With Even Twisted Yangian Symmetry”, Ann. Henri Poincare, 20:2 (2019), 339–392  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:220
    Полный текст:106
    Литература:27
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019