|
This article is cited in 4 scientific papers (total in 4 papers)
Asymptotic solitons of the sine-Gordon equation
V. P. Kotlyarov
Abstract:
The large time asymptotics of the solutions of the sine-Gordon equation which tend to zero when $x\to\infty$ and tend to the finite-gap solution of this equation when $x\to-\infty$ are investigated. It is proved that at $t\to\infty$ these solutions split into infinite series of solitons with variable phases. These solitons are generated by the continuous spectrum of the $L$-operator from the corresponding Lax representation.
Full text:
PDF file (1062 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1989, 80:1, 679–689
Bibliographic databases:
Received: 11.01.1988
Citation:
V. P. Kotlyarov, “Asymptotic solitons of the sine-Gordon equation”, TMF, 80:1 (1989), 15–28; Theoret. and Math. Phys., 80:1 (1989), 679–689
Citation in format AMSBIB
\Bibitem{Kot89}
\by V.~P.~Kotlyarov
\paper Asymptotic solitons of~the sine-Gordon equation
\jour TMF
\yr 1989
\vol 80
\issue 1
\pages 15--28
\mathnet{http://mi.mathnet.ru/tmf5109}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1018552}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 1
\pages 679--689
\crossref{https://doi.org/10.1007/BF01015305}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1989CJ81900002}
Linking options:
http://mi.mathnet.ru/eng/tmf5109 http://mi.mathnet.ru/eng/tmf/v80/i1/p15
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Anders, I, “Asymptotic solitons of the Johnson equation”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 284
-
Anders, I, “Soliton asymptotics of nondecaying solutions of the modified Kadomtsev-Petviashvili-I equation”, Journal of Mathematical Physics, 42:8 (2001), 3673
-
Kotlyarov V., Minakov A., “Riemann–Hilbert problem to the modified Korteveg-de Vries equation: Long-time dynamics of the steplike initial data”, J Math Phys, 51:9 (2010), 093506
-
Zhu J. Wang L. Qiao Zh., “Inverse Spectral Transform For the Ragnisco-Tu Equation With Heaviside Initial Condition”, J. Math. Anal. Appl., 474:1 (2019), 452–466
|
Number of views: |
This page: | 271 | Full text: | 101 | References: | 28 | First page: | 1 |
|