RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1985, Volume 65, Number 3, Pages 347–359 (Mi tmf5141)  

This article is cited in 51 scientific papers (total in 51 papers)

Infinite additional symmetries in two-dimensional conformal quantum field theory

A. B. Zamolodchikov

Landau Institute for Theoretical Physics, Academy of Sciences of the USSR

Abstract: Additional symmetries in two-dimensional conformal field theory generated by spin$S=1/2,1,…,3$ currents are investigated. For spins $S=5/2$ and $S=3$ the generators of the symmetry form associative algebras with quadratic determining relations. “Minimal models” of conformal field theory with such additional symmetries are considered.

Full text: PDF file (2393 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1985, 65:3, 1205–1213

Bibliographic databases:

Received: 19.11.1984

Citation: A. B. Zamolodchikov, “Infinite additional symmetries in two-dimensional conformal quantum field theory”, TMF, 65:3 (1985), 347–359; Theoret. and Math. Phys., 65:3 (1985), 1205–1213

Citation in format AMSBIB
\Bibitem{Zam85}
\by A.~B.~Zamolodchikov
\paper Infinite additional symmetries in two-dimensional conformal quantum field theory
\jour TMF
\yr 1985
\vol 65
\issue 3
\pages 347--359
\mathnet{http://mi.mathnet.ru/tmf5141}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=829902}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 65
\issue 3
\pages 1205--1213
\crossref{https://doi.org/10.1007/BF01036128}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1985D277400003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5141
  • http://mi.mathnet.ru/eng/tmf/v65/i3/p347

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Knizhnik, “Superconformal algebras in two dimensions”, Theoret. and Math. Phys., 66:1 (1986), 68–72  mathnet  crossref  mathscinet  isi
    2. A. B. Zamolodchikov, V. A. Fateev, “Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model”, Theoret. and Math. Phys., 71:2 (1987), 451–462  mathnet  crossref  mathscinet  isi
    3. T. G. Khovanova, “Korteweg–de Vries superequation related to the Lie superalgebra of Neveu-Schwarz-2 string theory”, Theoret. and Math. Phys., 72:2 (1987), 899–904  mathnet  crossref  mathscinet  zmath  isi
    4. S. L. Luk'yanov, “Quantization of the Gel'fand?Dikii brackets”, Funct. Anal. Appl., 22:4 (1988), 255–262  mathnet  crossref  mathscinet  zmath  isi
    5. F. G. Malikov, “Special vectors in Verma modules over affine algebras”, Funct. Anal. Appl., 23:1 (1989), 66–67  mathnet  crossref  mathscinet  zmath  isi
    6. V. Yu. Ovsienko, B. A. Khesin, “Symplectic leaves of the Gel'fand–Dikii brackets and homotopy classes of nondegenerate curves”, Funct. Anal. Appl., 24:1 (1990), 33–40  mathnet  crossref  mathscinet  zmath  isi
    7. A. O. Radul, “Lie algebras of differential operators, their central extensions, and $W$-algebras”, Funct. Anal. Appl., 25:1 (1991), 25–39  mathnet  crossref  mathscinet  zmath  isi
    8. O. S. Kravchenko, B. A. Khesin, “A central extension of the algebra of pseudodifferential symbols”, Funct. Anal. Appl., 25:2 (1991), 152–154  mathnet  crossref  mathscinet  zmath  isi
    9. D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Russian Math. Surveys, 46:4 (1991), 135–163  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. E. Nissimov, S. Pacheva, “$W_\infty$ – a geometric approach”, Theoret. and Math. Phys., 93:2 (1992), 1268–1278  mathnet  crossref  mathscinet  zmath  isi
    11. V. P. Karassiov, “Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics”, Theoret. and Math. Phys., 95:1 (1993), 367–377  mathnet  crossref  mathscinet  zmath
    12. Theoret. and Math. Phys., 95:2 (1993), 604–625  mathnet  crossref  mathscinet  zmath  isi
    13. Theoret. and Math. Phys., 96:2 (1993), 879–973  mathnet  crossref  mathscinet  zmath  isi
    14. P. Bowcock, G. Watts, “Null vectors, 3-point and 4-point functions in conformal field theory”, Theoret. and Math. Phys., 98:3 (1994), 350–356  mathnet  crossref  mathscinet  zmath  isi
    15. E. V. Kopanev, S. V. Kryukov, M. A. Suhoruchkin, “Conservation currents in quantum integrable models”, Theoret. and Math. Phys., 113:1 (1997), 1235–1243  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. Takimoto, Y, “Quantum exchange algebra and exact operator solution of A(2)-Toda field theory”, Nuclear Physics B, 543:3 (1999), 615  crossref  isi
    17. Hikami, K, “The Z(N) symmetric quantum lattice field theory the quantum group symmetry, the Yang–Baxter equation, and the integrals of motion”, Journal of the Physical Society of Japan, 68:1 (1999), 55  crossref  isi
    18. C. Briot, E. Ragoucy, “Yangians and $\mathcal W$-Algebras”, Theoret. and Math. Phys., 127:3 (2001), 709–718  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. Nirov, KS, “W-algebras for non-abelian Toda systems”, Journal of Geometry and Physics, 48:4 (2003), 505  crossref  isi
    20. S. A. Apikyan, M. A. Barsamian, K. J. Efthimiou, “Geometric Properties of $W$-Algebras and the Toda model”, Theoret. and Math. Phys., 138:2 (2004), 151–162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    21. Buchbinder, IL, “Classical Becchi-Rouet-Stora-Tyutin charge for nonlinear algebras”, Journal of Mathematical Physics, 48:8 (2007), 082306  crossref  mathscinet  zmath  adsnasa  isi
    22. V. A. Fateev, Ya. P. Pugay, “Expectation values of scaling fields in $Z_N$ Ising models”, Theoret. and Math. Phys., 154:3 (2008), 473–494  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    23. Isaev, AP, “Becchi-Rouet-Stora-Tyutin operators for W algebras”, Journal of Mathematical Physics, 49:7 (2008), 073512  crossref  mathscinet  zmath  adsnasa  isi
    24. Morozov, A, “Generation of matrix models by (W)over-cap-operators”, Journal of High Energy Physics, 2009, no. 4, 064  crossref  isi
    25. Fateeva, VA, “Correlation functions in conformal Toda field theory II”, Journal of High Energy Physics, 2009, no. 1, 033  crossref  mathscinet
    26. Luigi Accardi, Andreas Boukas, “Quantum Probability, Renormalization and Infinite-Dimensional $*$-Lie Algebras”, SIGMA, 5 (2009), 056, 31 pp.  mathnet  crossref  mathscinet
    27. Asorey, M, “BRST STRUCTURE OF NONLINEAR SUPERALGEBRAS”, International Journal of Modern Physics A, 24:27 (2009), 5033  crossref  isi
    28. Wyllard, N, “AN-1 conformal Toda field theory correlation functions from conformal N=2 SU(N) quiver gauge theories”, Journal of High Energy Physics, 2009, no. 11, 002
    29. Wei, SW, “Explicit field realizations of W algebras”, Physical Review D, 79:12 (2009), 126011  crossref  isi
    30. Fateev, VA, “Correlation functions of disorder fields and parafermionic currents in Z(N) Ising models”, Journal of Physics A-Mathematical and Theoretical, 42:30 (2009), 304013  crossref  isi
    31. Wyllard N., “AN-1 conformal Toda field theory correlation functions from conformal N=2 SU(N) quiver gauge theories”, Journal of High Energy Physics, 2009, no. 11, 002  isi
    32. Fateeva V.A., Litvinov A.V., “Correlation functions in conformal Toda field theory II”, Journal of High Energy Physics, 2009, no. 1, 033  isi
    33. Mironov, A, “On AGT relation in the case of U (3)”, Nuclear Physics B, 825:1–2 (2010), 1  crossref  isi
    34. A. D. Mironov, S. A. Mironov, A. Yu. Morozov, A. A. Morozov, “Calculations in conformal theory needed for verifying the Alday–Gaiotto–Tachikawa hypothesis”, Theoret. and Math. Phys., 165:3 (2010), 1662–1698  mathnet  crossref  crossref  isi
    35. Fateev V., Ribault S., “Conformal Toda theory with a boundary”, Journal of High Energy Physics, 2010, no. 12, 089  isi
    36. A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, Theoret. and Math. Phys., 166:1 (2011), 1–22  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    37. Ammon M., Gutperle M., Kraus P., Perlmutter E., “Spacetime geometry in higher spin gravity”, Journal of High Energy Physics, 2011, no. 10, 053  isi
    38. Taki M., “On AGT conjecture for pure super Yang-Mills and W-algebra”, Journal of High Energy Physics, 2011, no. 5, 038  isi
    39. Creutzig T., Gao P., Linshaw A.R., “Fermionic Coset, Critical Level W-4((2))-Algebra and Higher Spins”, J. High Energy Phys., 2012, no. 4, 031  crossref  isi
    40. Creutzig T. Ridout D., “Logarithmic Conformal Field Theory: Beyond an Introduction”, J. Phys. A-Math. Theor., 46:49, SI (2013)  crossref  isi
    41. Sfondrini A., “Towards Integrability For AdS(3)/CFT2”, J. Phys. A-Math. Theor., 48:2 (2015), 023001  crossref  isi
    42. P. G. Gavrilenko, A. V. Marshakov, “Free fermions, $W$-algebras, and isomonodromic deformations”, Theoret. and Math. Phys., 187:2 (2016), 649–677  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    43. Artamonov D.V., “Introduction To Finite W-Algebras”, Bol. Mat., 23:2 (2016), 165–219  mathscinet  isi
    44. Prochazka T., “W
      $$ \mathcal{W} $$
      -symmetry, topological vertex and affine Yangian”, J. High Energy Phys., 2016, no. 10, 077  crossref  mathscinet  isi  elib  scopus
    45. Gavrylenko P. Marshakov A., “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, J. High Energy Phys., 2016, no. 2, 181  crossref  mathscinet  isi  elib  scopus
    46. Poghosyan H., “The Light Asymptotic Limit of Conformal Blocks in N=1 Super Liouville Field Theory”, J. High Energy Phys., 2017, no. 9, 062  crossref  isi
    47. Alexandrov A., “Open Intersection Numbers and Free Fields”, Nucl. Phys. B, 922 (2017), 247–263  crossref  isi
    48. Poghossian R., “Recurrence Relations For the W-3 Conformal Blocks and N=2 SYM Partition Functions”, J. High Energy Phys., 2017, no. 11, 053  crossref  isi
    49. Basile T. Boulanger N., “Structure Constants of Shs[Lambda]: the Deformed-Oscillator Point of View”, J. Phys. A-Math. Theor., 51:2 (2018), 025201  crossref  isi
    50. Bershtein M. Gavrylenko P. Marshakov A., “Twist-Field Representations of W-Algebras, Exact Conformal Blocks and Character Identities”, J. High Energy Phys., 2018, no. 8, 108  crossref  isi
    51. Dupic T. Estienne B. Ikhlef Y., “The Imaginary Toda Field Theory”, J. Phys. A-Math. Theor., 52:10 (2019), 105201  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:708
    Full text:330
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019