RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1986, Volume 68, Number 3, Pages 415–424 (Mi tmf5194)  

One-dimensional lattice dynamics of hydrogen bonded systems

A. V. Zolotaryuk


Abstract: A one-dimensional continuum model of a hydrogen bonded system is considered. The model takes into account the interaction of the proton displacements with the deformation of the lattice of heavy ions. The existence is established of two soliton (slow and fast) and two phonon (low- and high-frequency) modes, for which the ranges of the protonsubsystem-lattice coupling constants and also the velocity intervals are determined. By the introduction of a dynamical collective variable that determines the soliton position the equations of motion of the system can be represented in the form of a dynamical equation for a particle.

Full text: PDF file (1101 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1986, 68:3, 916–923

Bibliographic databases:

Received: 17.06.1985

Citation: A. V. Zolotaryuk, “One-dimensional lattice dynamics of hydrogen bonded systems”, TMF, 68:3 (1986), 415–424; Theoret. and Math. Phys., 68:3 (1986), 916–923

Citation in format AMSBIB
\Bibitem{Zol86}
\by A.~V.~Zolotaryuk
\paper One-dimensional lattice dynamics of hydrogen bonded systems
\jour TMF
\yr 1986
\vol 68
\issue 3
\pages 415--424
\mathnet{http://mi.mathnet.ru/tmf5194}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 68
\issue 3
\pages 916--923
\crossref{https://doi.org/10.1007/BF01019393}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986G881200009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5194
  • http://mi.mathnet.ru/eng/tmf/v68/i3/p415

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:195
    Full text:70
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019