RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1989, Volume 81, Number 3, Pages 336–353 (Mi tmf5377)  

This article is cited in 6 scientific papers (total in 6 papers)

Combinatorics of the $R$ operation

A. N. Vasil'ev

Leningrad State University

Abstract: By using the functional language the new proof is given for the fundamental combinatorial statement in the renormalization theory [1], i. e. the application of $R$-operation to the diagrams of the initial theory is equivalent to the addition to the initial interaction $V(\varphi)$ the counterterms $\Delta V(\varphi)=-LH(\varphi)$, where $L$ defines $R=R(L)$ counter term operation on the diagrams such that the counter term $L\gamma$ corresponds with the graph $\gamma$, and $H(\varphi)$ is the $S$-matrix functional represented by the diagrams. (In the quantum field theory the operator of $S$-matrix is given by $T\exp V(\hat\varphi)=NH(\hat\varphi)$, where $T$ is a Wick chronological product, $N$ is a normal product, $\hat\varphi$ is a free field operator, $V(\hat\varphi) = iS_\mathrm{int}(\hat\varphi)$ is an interaction quantum operator.) The statement is proved for any $V$ and for an arbitrary operation $L$. The composite operators and the Wilson expansion are also considered.

Full text: PDF file (2184 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1989, 81:3, 1244–1257

Bibliographic databases:

Received: 13.07.1988

Citation: A. N. Vasil'ev, “Combinatorics of the $R$ operation”, TMF, 81:3 (1989), 336–353; Theoret. and Math. Phys., 81:3 (1989), 1244–1257

Citation in format AMSBIB
\Bibitem{Vas89}
\by A.~N.~Vasil'ev
\paper Combinatorics of~the $R$ operation
\jour TMF
\yr 1989
\vol 81
\issue 3
\pages 336--353
\mathnet{http://mi.mathnet.ru/tmf5377}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1035677}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 81
\issue 3
\pages 1244--1257
\crossref{https://doi.org/10.1007/BF01018954}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1989DP21300002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5377
  • http://mi.mathnet.ru/eng/tmf/v81/i3/p336

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “Proof of conformal invariance in the critical regime for models of Gross–Neveu type”, Theoret. and Math. Phys., 92:3 (1992), 1047–1054  mathnet  crossref  mathscinet  isi
    2. A. N. Vasil'ev, A. S. Stepanenko, “A method of calculating the critical dimensions of composite operators in the massless nonlinear $\sigma$ model”, Theoret. and Math. Phys., 95:1 (1993), 471–481  mathnet  crossref  zmath
    3. L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim, “Composite operators, short–distance expansion and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to the Kolmogorov's scaling”, Theoret. and Math. Phys., 100:3 (1994), 1086–1099  mathnet  crossref  mathscinet  zmath  isi
    4. A. N. Vasil'ev, M. I. Vyazovskii, S. È. Derkachev, N. A. Kivel', “On equivalence of renormalizations for standard and dimensional regularizations of $2D$ four-fermion interactions”, Theoret. and Math. Phys., 107:1 (1996), 441–455  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. M. I. Vyazovskii, N. A. Kivel', “Analysis of chiral anomaly in dimensional regularization by means of projection technique”, Theoret. and Math. Phys., 109:3 (1996), 1536–1543  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Smirnov, VA, “Applied asymptotic expansions in momenta and masses - Introduction”, Applied Asymptotic Expansions in Momenta and Masses, 177 (2002), 1  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:259
    Full text:84
    References:33
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019