RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1991, Volume 86, Number 1, Pages 16–30 (Mi tmf5413)  

This article is cited in 25 scientific papers (total in 25 papers)

On the existence of superconductivity in the Hubbard model

N. N. Bogolyubov, V. A. Moskalenko


Abstract: A generalized Wick theorem is proposed for the superconducting phase of the single-band Hubbard model, and a thermodynamic diagram technique taking into account the strong electron correlations of the system is developed. An exact Dyson equation is obtained for the single-particle Green's function and an approximate equation for the correlation twoparticle Green's function. On this basis, a dynamical system of equations that determines the superconducting phase of the Hubbard model is formulated.

Full text: PDF file (1258 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1991, 86:1, 10–19

Bibliographic databases:

Received: 02.07.1990

Citation: N. N. Bogolyubov, V. A. Moskalenko, “On the existence of superconductivity in the Hubbard model”, TMF, 86:1 (1991), 16–30; Theoret. and Math. Phys., 86:1 (1991), 10–19

Citation in format AMSBIB
\Bibitem{BogMos91}
\by N.~N.~Bogolyubov, V.~A.~Moskalenko
\paper On~the existence of superconductivity in the Hubbard model
\jour TMF
\yr 1991
\vol 86
\issue 1
\pages 16--30
\mathnet{http://mi.mathnet.ru/tmf5413}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1106825}
\zmath{https://zbmath.org/?q=an:0989.82510}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 1
\pages 10--19
\crossref{https://doi.org/10.1007/BF01018492}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1991GC79000002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5413
  • http://mi.mathnet.ru/eng/tmf/v86/i1/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Bogolyubov, V. A. Moskalenko, “Superconductivity in the hubbard model with deviation from half filling”, Theoret. and Math. Phys., 92:2 (1992), 820–825  mathnet  crossref  mathscinet  isi
    2. S. P. Cojocaru, V. A. Moskalenko, “A diagram method for the two-band Hubbard model”, Theoret. and Math. Phys., 97:2 (1993), 1290–1298  mathnet  crossref  isi
    3. N. N. Bogolyubov (Jr.), D. P. Sankovich, “N. N. Bogolyubov and statistical mechanics”, Russian Math. Surveys, 49:5 (1994), 19–49  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Theoret. and Math. Phys., 103:1 (1995), 455–474  mathnet  crossref  isi
    5. V. A. Moskalenko, “Perturbation theory for the periodic Anderson model: II. Superconducting state”, Theoret. and Math. Phys., 116:3 (1998), 1094–1107  mathnet  crossref  crossref  zmath  isi
    6. V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, Theoret. and Math. Phys., 121:3 (1999), 1654–1665  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: A diagrammatic approach”, Physical Review B, 59:1 (1999), 619  crossref  adsnasa  isi
    8. Moskalenko V.A., Entel P., Marinaro M., Perkins N.B., Holtfort C., “Hopping perturbation treatment of the periodic Anderson model around the atomic limit”, Physical Review B, 63:24 (2001), 245119  crossref  adsnasa  isi
    9. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons”, Journal of Experimental and Theoretical Physics, 97:3 (2003), 632  crossref  adsnasa  isi
    10. Moskalenko, VA, “Strong interaction of correlated electrons with phonons”, Physics of Particles and Nuclei, 36 (2005), S100  isi
    11. D. F. Digor, P. Entel, V. A. Moskalenko, N. M. Plakida, “Peculiarities of pair interaction in the four-band Hubbard model”, Theoret. and Math. Phys., 149:1 (2006), 1382–1392  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Moskalenko, VA, “Strong interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model”, Physical Review B, 74:7 (2006), 075109  crossref  adsnasa  isi
    13. Moskalenka, VA, “Interaction of strongly correlated electrons and acoustical phonons”, Low Temperature Physics, 32:4–5 (2006), 462  crossref  adsnasa  isi
    14. V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, R. Citro, “A diagram approach to the strong coupling in the single-impurity Anderson model”, Theoret. and Math. Phys., 155:3 (2008), 914–935  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, Theoret. and Math. Phys., 159:1 (2009), 551–560  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    16. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    17. Kuzemsky A.L., “Bogoliubov's Vision: Quasiaverages and Broken Symmetry to Quantum Protectorate and Emergence”, International Journal of Modern Physics B, 24:8 (2010), 835–935  crossref  adsnasa  isi
    18. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
    19. Moskalenko V.A., Dohotaru L.A., “Diagrammatic theory for periodic anderson model”, Physics of Particles and Nuclei, 41:7 (2010), 1044–1049  crossref  isi
    20. Moskalenko V.A., Dohotaru L.A., Cebotari I.D., “Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential”, Zh Èksper Teoret Fiz, 111:1 (2010), 97–103  crossref  isi
    21. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    22. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
    23. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    24. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
    25. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:343
    Full text:127
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020