RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2001, Volume 129, Number 2, Pages 360–368 (Mi tmf542)  

Observables in $2+1$ Gravity and Noncommutative Teichmüller Spaces

L. O. Chekhov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The algebra of quantum geodesics obtained by quantizing the coordinates of the Teichmüller spaces is the Nelson–Regge quantum $so_q(m)$ algebra of monodromies (Wilson loops) in the Chern–Simons theory, which provides an effective description of $(2+1)$-dimensional gravity.

DOI: https://doi.org/10.4213/tmf542

Full text: PDF file (277 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2001, 129:2, 1609–1616

Bibliographic databases:

Document Type: Article

Citation: L. O. Chekhov, “Observables in $2+1$ Gravity and Noncommutative Teichmüller Spaces”, TMF, 129:2 (2001), 360–368; Theoret. and Math. Phys., 129:2 (2001), 1609–1616

Citation in format AMSBIB
\Bibitem{Che01}
\by L.~O.~Chekhov
\paper Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces
\jour TMF
\yr 2001
\vol 129
\issue 2
\pages 360--368
\mathnet{http://mi.mathnet.ru/tmf542}
\crossref{https://doi.org/10.4213/tmf542}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1904806}
\zmath{https://zbmath.org/?q=an:1037.81053}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 2
\pages 1609--1616
\crossref{https://doi.org/10.1023/A:1012847627048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000173055900015}


Linking options:
  • http://mi.mathnet.ru/eng/tmf542
  • https://doi.org/10.4213/tmf542
  • http://mi.mathnet.ru/eng/tmf/v129/i2/p360

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:302
    Full text:80
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019