RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1991, Volume 86, Number 3, Pages 338–343 (Mi tmf5450)  

This article is cited in 8 scientific papers (total in 8 papers)

Classification of vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory

D. V. Yur'ev


Abstract: The vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory are classified.

Full text: PDF file (622 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1991, 86:3, 231–235

Bibliographic databases:

Received: 22.03.1990

Citation: D. V. Yur'ev, “Classification of vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory”, TMF, 86:3 (1991), 338–343; Theoret. and Math. Phys., 86:3 (1991), 231–235

Citation in format AMSBIB
\Bibitem{Yur91}
\by D.~V.~Yur'ev
\paper Classification of vertex operators in two-dimensional
$\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory
\jour TMF
\yr 1991
\vol 86
\issue 3
\pages 338--343
\mathnet{http://mi.mathnet.ru/tmf5450}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1107935}
\zmath{https://zbmath.org/?q=an:0726.17008}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 3
\pages 231--235
\crossref{https://doi.org/10.1007/BF01028419}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1991GJ55400003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5450
  • http://mi.mathnet.ru/eng/tmf/v86/i3/p338

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Russian Math. Surveys, 46:4 (1991), 135–163  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. S. A. Bychkov, S. V. Plotnikov, D. V. Yur'ev, “Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden $\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory”, Russian Math. Surveys, 47:3 (1992), 169–169  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler formulas”, Theoret. and Math. Phys., 92:1 (1992), 814–816  mathnet  crossref  mathscinet  isi
    4. D. V. Yur'ev, “QPFT operator algebras and commutative exterior differential calculus”, Theoret. and Math. Phys., 93:1 (1992), 1101–1105  mathnet  crossref  mathscinet  zmath  isi
    5. S. A. Bychkov, D. V. Yur'ev, “Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory”, Theoret. and Math. Phys., 97:3 (1993), 1333–1339  mathnet  crossref  mathscinet  zmath  isi
    6. D. V. Yur'ev, “Complex projective geometry and quantum projective field theory”, Theoret. and Math. Phys., 101:3 (1994), 1387–1403  mathnet  crossref  mathscinet  zmath  isi
    7. D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets”, Theoret. and Math. Phys., 98:2 (1994), 147–161  mathnet  crossref  mathscinet  zmath  isi
    8. D. V. Yur'ev, “Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems”, Theoret. and Math. Phys., 106:2 (1996), 276–290  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:170
    Full text:65
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020