RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 1991, том 86, номер 3, страницы 338–343 (Mi tmf5450)  

Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)

Классификация вершинных операторов в двумерной $\operatorname{sl} (2,\mathbb C)$-инвариантной квантовой теории поля

Д. В. Юрьев


Аннотация: Классифицированы вершинные операторы в двумерной $\operatorname{sl} (2,\mathbb C)$-инвариантной квантовой теории поля.

Полный текст: PDF файл (622 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 1991, 86:3, 231–235

Реферативные базы данных:

Поступило в редакцию: 22.03.1990

Образец цитирования: Д. В. Юрьев, “Классификация вершинных операторов в двумерной $\operatorname{sl} (2,\mathbb C)$-инвариантной квантовой теории поля”, ТМФ, 86:3 (1991), 338–343; Theoret. and Math. Phys., 86:3 (1991), 231–235

Цитирование в формате AMSBIB
\RBibitem{Yur91}
\by Д.~В.~Юрьев
\paper Классификация вершинных операторов в~двумерной $\operatorname{sl} (2,\mathbb C)$-инвариантной квантовой теории поля
\jour ТМФ
\yr 1991
\vol 86
\issue 3
\pages 338--343
\mathnet{http://mi.mathnet.ru/tmf5450}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1107935}
\zmath{https://zbmath.org/?q=an:0726.17008}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 3
\pages 231--235
\crossref{https://doi.org/10.1007/BF01028419}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1991GJ55400003}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf5450
  • http://mi.mathnet.ru/rus/tmf/v86/i3/p338

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Д. В. Юрьев, “Квантовая конформная теория поля как бесконечномерная некоммутативная геометрия”, УМН, 46:4(280) (1991), 115–138  mathnet  mathscinet  zmath  adsnasa; D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Russian Math. Surveys, 46:4 (1991), 135–163  crossref  isi
    2. С. А. Бычков, С. В. Плотников, Д. В. Юрьев, “Складень модулей Верма над алгеброй Ли $\mathfrak{sl}(2,\mathbb C)$ и скрытие $\mathfrak{sl}(3,\mathbb C)$-симметрии в квантовой проективной теории поля”, УМН, 47:3(285) (1992), 153–153  mathnet  mathscinet  zmath  adsnasa; S. A. Bychkov, S. V. Plotnikov, D. V. Yur'ev, “Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden $\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory”, Russian Math. Surveys, 47:3 (1992), 169–169  crossref  isi
    3. Д. В. Юрьев, “Квантовая проективная теория поля, квантовополевые аналоги формул Эйлера”, ТМФ, 92:1 (1992), 172–176  mathnet  mathscinet; D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler formulas”, Theoret. and Math. Phys., 92:1 (1992), 814–816  crossref  isi
    4. Д. В. Юрьев, “КПТП-операторные алгебры и коммутативное внешнее дифференциальное исчисление”, ТМФ, 93:1 (1992), 32–38  mathnet  mathscinet  zmath; D. V. Yur'ev, “QPFT operator algebras and commutative exterior differential calculus”, Theoret. and Math. Phys., 93:1 (1992), 1101–1105  crossref  isi
    5. С. А. Бычков, Д. В. Юрьев, “Три алгебраические структуры квантовой проективной ($\mathrm{sl}(2,\mathbb C)$-инвариантной) теории поля”, ТМФ, 97:3 (1993), 336–347  mathnet  mathscinet  zmath; S. A. Bychkov, D. V. Yur'ev, “Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory”, Theoret. and Math. Phys., 97:3 (1993), 1333–1339  crossref  isi
    6. Д. В. Юрьев, “Комплексная проективная геометрия и квантовая проективная теория поля”, ТМФ, 101:3 (1994), 331–348  mathnet  mathscinet  zmath; D. V. Yur'ev, “Complex projective geometry and quantum projective field theory”, Theoret. and Math. Phys., 101:3 (1994), 1387–1403  crossref  isi
    7. Д. В. Юрьев, “Квантовая проективная теория поля: квантово-полевые аналоги уравнений Эйлера–Арнольда в проективных $G$-гипермультиплетах”, ТМФ, 98:2 (1994), 220–240  mathnet  mathscinet  zmath; D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets”, Theoret. and Math. Phys., 98:2 (1994), 147–161  crossref  isi
    8. Д. В. Юрьев, “Watch-dog-эффекты Белавкина–Колокольцова в интерактивно управляемых стохастических динамических видеосистемах”, ТМФ, 106:2 (1996), 333–352  mathnet  crossref  mathscinet  zmath; D. V. Yur'ev, “Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems”, Theoret. and Math. Phys., 106:2 (1996), 276–290  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:174
    Полный текст:66
    Литература:33
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020