RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1991, Volume 86, Number 3, Pages 391–401 (Mi tmf5456)  

This article is cited in 3 scientific papers (total in 3 papers)

Acoustic model of zero-width slits and hydrodynamic boundary layer stability

B. S. Pavlov, I. Yu. Popov


Abstract: The flow of a fluid in a two-dimensional half-space with a system of acoustic resonators joined to its boundary is investigated. The acoustic system is calculated using a model of zero-width slits based on the theory of self-adjoint extensions of symmetric operators. The influence of the acoustic effects on the stability of a boundary layer of viscous compressible fluid is taken into account. It is shown that for a definite choice of the parameters of the system it is possible to increase the critical Reynolds number, i.e., to laminarize the flow.

Full text: PDF file (1198 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1991, 86:3, 269–276

Bibliographic databases:

Received: 25.10.1990

Citation: B. S. Pavlov, I. Yu. Popov, “Acoustic model of zero-width slits and hydrodynamic boundary layer stability”, TMF, 86:3 (1991), 391–401; Theoret. and Math. Phys., 86:3 (1991), 269–276

Citation in format AMSBIB
\Bibitem{PavPop91}
\by B.~S.~Pavlov, I.~Yu.~Popov
\paper Acoustic model of zero-width slits and hydrodynamic boundary layer stability
\jour TMF
\yr 1991
\vol 86
\issue 3
\pages 391--401
\mathnet{http://mi.mathnet.ru/tmf5456}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1107939}
\zmath{https://zbmath.org/?q=an:0729.76074|0719.76065}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 3
\pages 269--276
\crossref{https://doi.org/10.1007/BF01028425}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1991GJ55400009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5456
  • http://mi.mathnet.ru/eng/tmf/v86/i3/p391

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Kiselev, B. S. Pavlov, “Essential spectrum of the Laplacian for the Neumann problem in a model region of complicated structure”, Theoret. and Math. Phys., 99:1 (1994), 383–395  mathnet  crossref  mathscinet  zmath  isi
    2. I. Yu. Popov, “Stratified flow in electric field, Schrödinger equation and operator extension theory model”, Theoret. and Math. Phys., 103:2 (1995), 535–542  mathnet  crossref  mathscinet  zmath  isi
    3. Kurasov, P, “On field theory methods in singular perturbation theory”, Letters in Mathematical Physics, 64:2 (2003), 171  crossref  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:227
    Full text:76
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020