RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1991, Volume 87, Number 1, Pages 3–21 (Mi tmf5464)  

Generalized twistors and geometric quantization

A. D. Popov


Abstract: The curved phase space $M$ of an arbitrary generalized Hamiltonian system that possesses invariance with respect to a Lie group $G$ is considered. The geometric and BRST quantizations of these phase spaces are considered. For $M$ the space of universal ghosts (specters) $S$ is introduced; it contains the space of ghosts $D$ for any admissible Lie group $G$ of constraints. The phase manifold $M$ is embedded in the manifold of generalized twistors $Z$. A quantization scheme that generalizes the approaches of the geometric and BRST quantizations is described. In this scheme, the quantum theory is formulated in terms of the generalized twistor manifold and bundles over it.

Full text: PDF file (2737 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1991, 87:1, 331–344

Bibliographic databases:

Received: 26.10.1990

Citation: A. D. Popov, “Generalized twistors and geometric quantization”, TMF, 87:1 (1991), 3–21; Theoret. and Math. Phys., 87:1 (1991), 331–344

Citation in format AMSBIB
\Bibitem{Pop91}
\by A.~D.~Popov
\paper Generalized twistors and geometric quantization
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 3--21
\mathnet{http://mi.mathnet.ru/tmf5464}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1122775}
\zmath{https://zbmath.org/?q=an:1189.53085}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 331--344
\crossref{https://doi.org/10.1007/BF01016571}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5464
  • http://mi.mathnet.ru/eng/tmf/v87/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:366
    Full text:154
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020