RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2001, Volume 129, Number 3, Pages 464–490 (Mi tmf548)  

This article is cited in 8 scientific papers (total in 8 papers)

Ultra-Second Quantization and “Ghosts” in Quantized Entropy

V. P. Maslov

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: We previously constructed the theory of quantum thermodynamics, which assigns operators to dual variables (for example, pressure and volume or temperature and entropy, i.e., dual pairs of extensive and intensive variables similar to momenta and coordinates in classical mechanics) similarly to the theory of quantum mechanics. Here we show that in both the bosonic and fermionic cases, the quantized entropy introduced as an operator in special Fock spaces containing a new variable, called the statistical spin, depends on some variables that do not affect any physical results and are hence called “ghosts”.

DOI: https://doi.org/10.4213/tmf548

Full text: PDF file (345 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2001, 129:3, 1694–1716

Bibliographic databases:

Received: 21.06.2001

Citation: V. P. Maslov, “Ultra-Second Quantization and “Ghosts” in Quantized Entropy”, TMF, 129:3 (2001), 464–490; Theoret. and Math. Phys., 129:3 (2001), 1694–1716

Citation in format AMSBIB
\Bibitem{Mas01}
\by V.~P.~Maslov
\paper Ultra-Second Quantization and ``Ghosts'' in Quantized Entropy
\jour TMF
\yr 2001
\vol 129
\issue 3
\pages 464--490
\mathnet{http://mi.mathnet.ru/tmf548}
\crossref{https://doi.org/10.4213/tmf548}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1905069}
\zmath{https://zbmath.org/?q=an:1031.82005}
\transl
\jour Theoret. and Math. Phys.
\yr 2001
\vol 129
\issue 3
\pages 1694--1716
\crossref{https://doi.org/10.1023/A:1013015401762}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000173128700006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf548
  • https://doi.org/10.4213/tmf548
  • http://mi.mathnet.ru/eng/tmf/v129/i3/p464

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, “Statistical Ensemble and Quantization of Thermodynamics”, Math. Notes, 71:4 (2002), 509–516  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. P. Maslov, “Quantization of Boltzmann Entropy: Pairs and Correlation Function”, Theoret. and Math. Phys., 131:2 (2002), 666–680  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. P. Maslov, “Ultratertiary Quantization of Thermodynamics”, Theoret. and Math. Phys., 132:3 (2002), 1222–1232  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Maslov, VP, “Spectral series and quantization of thermodynamics”, Russian Journal of Mathematical Physics, 9:1 (2002), 112  mathscinet  zmath  isi
    5. Maslov V.P., “Quantization of thermodynamics and the Bardeencooper-Schriffer-Bogolyubov equation”, Asymptotic Combinatorics With Applications To Mathematical Physics, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 77, 2002, 209–220  mathscinet  zmath  isi
    6. V. P. Maslov, “On the Dispersion Law of the Form $\varepsilon(p)=\hbar^2p^2/2m+\widetilde V(p)-\widetilde V(0)$ for Elementary Excitations of a Nonideal Fermi Gas in the Pair Interaction Approximation $(i\leftrightarrow j)$, $V(|x_i-x_j|)$”, Math. Notes, 82:5 (2007), 619–634  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. V. P. Maslov, “Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule”, Theoret. and Math. Phys., 153:3 (2007), 1677–1696  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Maslov VP, “On the superfluidity of classical liquid in nanotubes, I. Case of even number of neutrons”, Russian Journal of Mathematical Physics, 14:3 (2007), 304–318  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:545
    Full text:194
    References:82
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020