RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1992, Volume 91, Number 1, Pages 3–16 (Mi tmf5557)  

This article is cited in 2 scientific papers (total in 2 papers)

True BRST symmetry algebra and the theory of its representations

A. V. Voronin, S. S. Horuzhy

V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Abstract: A simple treatment of BRST symmetry is proposed. From the physical point of view, it expresses a symmetry between ghosts and spurions; from the mathematical point of view, the symmetry operations are linear transformations in the superspaee $C_{1,1}$. From this it follows that the true BRST symmetry algebra is $l(1,1)$, the Lie superalgebra of all linear endomorphisms of $C_{1,1}$, which extends the usual BRST algebra of the generators $Q$ and $Q_c$ with two new generators $K=Q^*$ and $R=\{Q,Q^*\}$. The theory of the representations of $l(1,1)$ is developed systematically. The sets of automorphisms and involutions of $l(1,1)$ are described. Decompositions into irreducible and indecomposable components are constructed for large classes of representations, both finiteand infinite-dimensional. Particular attention is devoted to the analysis of the indecomposable representations (in particular, a connection between them and subspaces of the continuous spectrum of the generators is found) and also of the metric properties of the indefinite spaces of the representations. A class of physical representations is identified and described in detail.

Full text: PDF file (1783 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1992, 91:1, 327–335

Bibliographic databases:

Received: 23.12.1991

Citation: A. V. Voronin, S. S. Horuzhy, “True BRST symmetry algebra and the theory of its representations”, TMF, 91:1 (1992), 3–16; Theoret. and Math. Phys., 91:1 (1992), 327–335

Citation in format AMSBIB
\Bibitem{VorHor92}
\by A.~V.~Voronin, S.~S.~Horuzhy
\paper True BRST symmetry algebra and the theory of its representations
\jour TMF
\yr 1992
\vol 91
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/tmf5557}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1182545}
\zmath{https://zbmath.org/?q=an:0782.46057|0774.46045}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 91
\issue 1
\pages 327--335
\crossref{https://doi.org/10.1007/BF01019825}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KF26500001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5557
  • http://mi.mathnet.ru/eng/tmf/v91/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. S. Horuzhy, A. V. Voronin, “A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories”, Theoret. and Math. Phys., 93:2 (1992), 1318–1327  mathnet  crossref  mathscinet  zmath  isi
    2. A. V. Voronin, S. S. Horuzhy, “Conformal Theories, BRST Formalism and Representations of the Lie Superalgebras”, Proc. Steklov Inst. Math., 228 (2000), 145–157  mathnet  mathscinet  zmath
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:230
    Full text:91
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019