RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 122, Number 1, Pages 88–101 (Mi tmf557)  

This article is cited in 9 scientific papers (total in 9 papers)

Integrable ordinary differential equations on free associative algebras

A. V. Mikhailovab, V. V. Sokolovc

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b University of Leeds
c Landau Institute for Theoretical Physics, Centre for Non-linear Studies

Abstract: We consider a classification problem for integrable nonlinear ordinary differential equations with an independent variable belonging to a free associative algebra $\mathcal M$. Every equation of this type admits an $m\times m$ matrix reduction for an arbitrary $m$. The existence of symmetries or first integrals belonging to $\mathcal M$ is used as an integrability criterion.

DOI: https://doi.org/10.4213/tmf557

Full text: PDF file (252 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 122:1, 72–83

Bibliographic databases:


Citation: A. V. Mikhailov, V. V. Sokolov, “Integrable ordinary differential equations on free associative algebras”, TMF, 122:1 (2000), 88–101; Theoret. and Math. Phys., 122:1 (2000), 72–83

Citation in format AMSBIB
\Bibitem{MikSok00}
\by A.~V.~Mikhailov, V.~V.~Sokolov
\paper Integrable ordinary differential equations on free associative algebras
\jour TMF
\yr 2000
\vol 122
\issue 1
\pages 88--101
\mathnet{http://mi.mathnet.ru/tmf557}
\crossref{https://doi.org/10.4213/tmf557}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1776509}
\zmath{https://zbmath.org/?q=an:0962.34004}
\elib{http://elibrary.ru/item.asp?id=13345801}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 1
\pages 72--83
\crossref{https://doi.org/10.1007/BF02551171}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000086224200008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf557
  • https://doi.org/10.4213/tmf557
  • http://mi.mathnet.ru/eng/tmf/v122/i1/p88

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. S. B. Leble, “Covariance of Lax Pairs and Integrability of the Compatibility Condition”, Theoret. and Math. Phys., 128:1 (2001), 890–905  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Ustinov, NV, “Darboux integration of i (rho)over-dot = [H, f(rho)]”, Physics Letters A, 279:5–6 (2001), 333  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    4. Cieslinski, JL, “Darboux covariant equations of von Neumann type and their generalizations”, Journal of Mathematical Physics, 44:4 (2003), 1763  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Ustinov NV, “The lattice equations of the Toda type with an interaction between a few neighbourhoods”, Journal of Physics A-Mathematical and General, 37:5 (2004), 1737–1746  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    6. S. B. Leble, “Necessary Covariance Conditions for a One-Field Lax Pair”, Theoret. and Math. Phys., 144:1 (2005), 985–994  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Leble S., “Covariant forms of Lax one-field operators: From abelian to noncommutative”, Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 201, 2006, 161–173  mathscinet  zmath  isi
    8. Calogero F., “An integrable many-body problem”, J Math Phys, 52:10 (2011), 102702  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    9. Calogero F., “Two Quite Similar Matrix ODEs and the Many-Body Problems Related to Them”, Int. J. Geom. Methods Mod. Phys., 9:2, SI (2012), 1260002  crossref  mathscinet  isi  elib  scopus  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:339
    Full text:103
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019