RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1992, Volume 91, Number 2, Pages 192–206 (Mi tmf5572)  

Tensor Banach algebras of projective type. II. The $l_1$ case

V. D. Ivashchuk

Scientific and Research Centre on Surface and Vacuum Properties Investigations

Abstract: It is shown that the tensor Banach functor of projective type $\widehat{\mathscr T}_K$ [1] corresponding to the complete normed field $K$ is quasiidempotent on infinite-dimensional $l_1$ spaces, i.e.,
$$ \widehat{\mathscr T}_K(\theta_K(\widehat{\mathscr T}_K(l_1(M,K))))\cong\widehat{\mathscr T}_K(l_1(M,K)), $$
where $M$ is an infinite set and $\theta_K$ is the forgetful functor. An $l_1$ realization of the Banach algebra $\widehat{\mathscr T}_K(l_1(M,K))$ is constructed.

Full text: PDF file (1318 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1992, 91:2, 462–473

Bibliographic databases:

Received: 21.09.1991

Citation: V. D. Ivashchuk, “Tensor Banach algebras of projective type. II. The $l_1$ case”, TMF, 91:2 (1992), 192–206; Theoret. and Math. Phys., 91:2 (1992), 462–473

Citation in format AMSBIB
\Bibitem{Iva92}
\by V.~D.~Ivashchuk
\paper Tensor Banach algebras of projective type.~II. The~$l_1$ case
\jour TMF
\yr 1992
\vol 91
\issue 2
\pages 192--206
\mathnet{http://mi.mathnet.ru/tmf5572}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1182535}
\zmath{https://zbmath.org/?q=an:0781.46052}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 91
\issue 2
\pages 462--473
\crossref{https://doi.org/10.1007/BF01018845}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KG55600002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5572
  • http://mi.mathnet.ru/eng/tmf/v91/i2/p192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:153
    Full text:56
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019