RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 122, Number 2, Pages 239–250 (Mi tmf566)  

This article is cited in 5 scientific papers (total in 5 papers)

Binary Darboux transformations and $N$-wave systems in rings

S. B. Lebleab

a Kaliningrad State University
b Technical University of Gdańsk

Abstract: The covariance theorems for elementary and binary Darboux transformations in rings are formulated and proved for generalized Zakharov–Shabat problems. The definition of the elementary Darboux transformation is extended to an arbitrary number of orthogonal idempotents. The binary transformation is defined as a sequence of elementary transformations for direct and conjugate problems. The heredity property for the reduction constraints is established for some $UV$ pairs in rings; hence, the transformation generates solutions and infinitesimal symmetries of the corresponding zero-curvature equations. The explicit expressions for the transformations, solitons, and infinitesimals are given in the general case and in physically significant cases of extended non-Abelian $N$-wave equations (with linear terms added).

DOI: https://doi.org/10.4213/tmf566

Full text: PDF file (232 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 122:2, 200–210

Bibliographic databases:


Citation: S. B. Leble, “Binary Darboux transformations and $N$-wave systems in rings”, TMF, 122:2 (2000), 239–250; Theoret. and Math. Phys., 122:2 (2000), 200–210

Citation in format AMSBIB
\Bibitem{Leb00}
\by S.~B.~Leble
\paper Binary Darboux transformations and $N$-wave systems in rings
\jour TMF
\yr 2000
\vol 122
\issue 2
\pages 239--250
\mathnet{http://mi.mathnet.ru/tmf566}
\crossref{https://doi.org/10.4213/tmf566}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1776520}
\zmath{https://zbmath.org/?q=an:0987.37067}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 2
\pages 200--210
\crossref{https://doi.org/10.1007/BF02551197}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000086555000008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf566
  • https://doi.org/10.4213/tmf566
  • http://mi.mathnet.ru/eng/tmf/v122/i2/p239

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. B. Leble, “Covariance of Lax Pairs and Integrability of the Compatibility Condition”, Theoret. and Math. Phys., 128:1 (2001), 890–905  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Leble, SB, “Elementary, binary and Schlesinger transformations in differential ring geometry”, European Physical Journal B, 29:2 (2002), 189  crossref  mathscinet  adsnasa  isi  scopus  scopus  scopus
    3. A. A. Perelomova, S. B. Leble, “Interaction of Vortical and Acoustic Waves: From General Equations to Integrable Cases”, Theoret. and Math. Phys., 144:1 (2005), 1030–1039  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Haider B., Hassan M., Saleem U., “Binary Darboux Transformation and Quasideterminant Solutions of the Chiral Field”, J Nonlinear Math Phys, 18:2 (2011), 299–321  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    5. Bushra Haider, Mahmood-ul Hassan, “Quasi-Grammian Solutions of the Generalized Coupled Dispersionless Integrable System”, SIGMA, 8 (2012), 084, 15 pp.  mathnet  crossref  mathscinet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:558
    Full text:124
    References:47
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020