RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1988, Volume 77, Number 1, Pages 25–41 (Mi tmf5678)  

This article is cited in 8 scientific papers (total in 8 papers)

Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum

D. A. Korotkin


Abstract: A new and large class of exact solutions of the stationary axisymmetric Einstein equation, which are expressed in terms of the Riemann $\theta$ function, is constructed. The properties of the constructed “finite-gap” solutions differ significantly from those of the well-known finite-gap solutions (for example, of the Korteweg–de Vries equation and the nonlinear Schrödinger equation). In particular, the dependence on the dynamical variables in the final expressions is given by a trajectory on a manifold of moduli of algebraic curves, and not on the Jacobi manifold of a given curve. In a degenerate case the constructed solutions include all the main known solutions that can be expressed in terms of elementary functions.

Full text: PDF file (1633 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1988, 77:1, 1018–1031

Bibliographic databases:

Received: 21.04.1987

Citation: D. A. Korotkin, “Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum”, TMF, 77:1 (1988), 25–41; Theoret. and Math. Phys., 77:1 (1988), 1018–1031

Citation in format AMSBIB
\Bibitem{Kor88}
\by D.~A.~Korotkin
\paper Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
\jour TMF
\yr 1988
\vol 77
\issue 1
\pages 25--41
\mathnet{http://mi.mathnet.ru/tmf5678}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=972479}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 77
\issue 1
\pages 1018--1031
\crossref{https://doi.org/10.1007/BF01028676}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1988AD89600003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5678
  • http://mi.mathnet.ru/eng/tmf/v77/i1/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Korotkin, “Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions”, Math. USSR-Sb., 70:2 (1991), 355–366  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. D. A. Korotkin, V. B. Matveev, “Theta Function Solutions of the Schlesinger System and the Ernst Equation”, Funct. Anal. Appl., 34:4 (2000), 252–264  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. C. Klein, “Exact Relativistic Treatment of Stationary Counter-Rotating Dust Disks: Axis, Disk, and Limiting Cases”, Theoret. and Math. Phys., 127:3 (2001), 767–778  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. C. Klein, “Isomonodromy Approach to Boundary Value Problems for the Ernst Equation”, Theoret. and Math. Phys., 134:1 (2003), 72–85  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. C. Klein, “The Kerr Solution on Partially Degenerate Hyperelliptic Riemann Surfaces”, Theoret. and Math. Phys., 137:2 (2003), 1520–1526  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Klein, C, “On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks”, Annalen der Physik, 12:10 (2003), 599  crossref  isi
    7. Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837  crossref  isi
    8. Aristophanes Dimakis, Nils Kanning, Folkert Müller-Hoissen, “The Non-Autonomous Chiral Model and the Ernst Equation of General Relativity in the Bidifferential Calculus Framework”, SIGMA, 7 (2011), 118, 27 pp.  mathnet  crossref  mathscinet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:394
    Full text:117
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020