RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1990, Volume 82, Number 3, Pages 428–437 (Mi tmf5723)  

This article is cited in 34 scientific papers (total in 34 papers)

Diagram technique for the Hubbard model

M. I. Vladimir, V. A. Moskalenko


Abstract: A generalized Wick theorem is formulated for the Hubbard model. According to the theorem, the mean value of the time-ordered product of electron operators is represented as a sum of products of single-site cumulants. The theorem is used to construct a diagram technique for the temperature-dependent Green's functions. A Dyson equation for the single-particle Green's function and an expression for the free energy are obtained.

Full text: PDF file (973 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1990, 82:3, 301–308

Bibliographic databases:

Received: 19.10.1989

Citation: M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model”, TMF, 82:3 (1990), 428–437; Theoret. and Math. Phys., 82:3 (1990), 301–308

Citation in format AMSBIB
\Bibitem{VlaMos90}
\by M.~I.~Vladimir, V.~A.~Moskalenko
\paper Diagram technique for the Hubbard model
\jour TMF
\yr 1990
\vol 82
\issue 3
\pages 428--437
\mathnet{http://mi.mathnet.ru/tmf5723}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 82
\issue 3
\pages 301--308
\crossref{https://doi.org/10.1007/BF01029224}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1990EB42600010}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5723
  • http://mi.mathnet.ru/eng/tmf/v82/i3/p428

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model. II. Metal-insulator transition”, Theoret. and Math. Phys., 85:2 (1990), 1185–1192  mathnet  crossref  isi
    2. N. N. Bogolyubov, V. A. Moskalenko, “On the existence of superconductivity in the Hubbard model”, Theoret. and Math. Phys., 86:1 (1991), 10–19  mathnet  crossref  mathscinet  zmath  isi
    3. N. N. Bogolyubov, V. A. Moskalenko, “Superconductivity in the hubbard model with deviation from half filling”, Theoret. and Math. Phys., 92:2 (1992), 820–825  mathnet  crossref  mathscinet  isi
    4. S. P. Cojocaru, V. A. Moskalenko, “A diagram method for the two-band Hubbard model”, Theoret. and Math. Phys., 97:2 (1993), 1290–1298  mathnet  crossref  isi
    5. Theoret. and Math. Phys., 103:1 (1995), 455–474  mathnet  crossref  isi
    6. V. S. Kapitonov, P. A. Sevastianov, “Integration over the superalgebra in the Hubbard model with the strong correlation”, Theoret. and Math. Phys., 107:2 (1996), 635–649  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. I. G. Medvedev, “New diagram technique for the Anderson model”, Theoret. and Math. Phys., 109:2 (1996), 1460–1472  mathnet  crossref  crossref  zmath  isi
    8. V. A. Moskalenko, “Perturbation theory for nonperiodic Anderson model”, Theoret. and Math. Phys., 110:2 (1997), 243–255  mathnet  crossref  crossref  zmath  isi
    9. V. A. Moskalenko, “Electron-phonon interaction of strong correlated systems”, Theoret. and Math. Phys., 111:3 (1997), 744–753  mathnet  crossref  crossref  isi
    10. V. A. Moskalenko, N. M. Plakida, “Dynamic spin susceptibility in the Hubbard model”, Theoret. and Math. Phys., 113:1 (1997), 1309–1321  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. V. A. Moskalenko, “Electron-phonon interaction of strongly correlated systems. II. Strong coupling limit”, Theoret. and Math. Phys., 113:3 (1997), 1559–1563  mathnet  crossref  crossref  isi
    12. V. A. Moskalenko, “Perturbation theory for the periodic Anderson model: II. Superconducting state”, Theoret. and Math. Phys., 116:3 (1998), 1094–1107  mathnet  crossref  crossref  zmath  isi
    13. V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, Theoret. and Math. Phys., 121:3 (1999), 1654–1665  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: A diagrammatic approach”, Physical Review B, 59:1 (1999), 619  crossref  adsnasa  isi
    15. Palistrant, ME, “Superconducting transition temperature and isotope exponent in superconductors with low Fermi energies”, Low Temperature Physics, 26:6 (2000), 407  crossref  adsnasa  isi
    16. D. F. Digor, P. Entel, M. Marinaro, V. A. Moskalenko, N. B. Perkins, “The Possibility of Forming Coupled Pairs in the Periodic Anderson Model”, Theoret. and Math. Phys., 127:2 (2001), 664–675  mathnet  crossref  crossref  zmath  isi
    17. Moskalenko V.A., Entel P., Marinaro M., Perkins N.B., Holtfort C., “Hopping perturbation treatment of the periodic Anderson model around the atomic limit”, Physical Review B, 63:24 (2001), 245119  crossref  adsnasa  isi
    18. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons”, Journal of Experimental and Theoretical Physics, 97:3 (2003), 632  crossref  adsnasa  isi
    19. Moskalenko, VA, “Strong interaction of correlated electrons with phonons”, Physics of Particles and Nuclei, 36 (2005), S100  isi
    20. Moskalenko, VA, “Strong interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model”, Physical Review B, 74:7 (2006), 075109  crossref  adsnasa  isi
    21. Moskalenka, VA, “Interaction of strongly correlated electrons and acoustical phonons”, Low Temperature Physics, 32:4–5 (2006), 462  crossref  adsnasa  isi
    22. V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, R. Citro, “A diagram approach to the strong coupling in the single-impurity Anderson model”, Theoret. and Math. Phys., 155:3 (2008), 914–935  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    23. V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, Theoret. and Math. Phys., 159:1 (2009), 551–560  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    24. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    25. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
    26. Moskalenko V.A., Dohotaru L.A., “Diagrammatic theory for periodic anderson model”, Physics of Particles and Nuclei, 41:7 (2010), 1044–1049  crossref  isi
    27. Moskalenko V.A., Dohotaru L.A., Cebotari I.D., “Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential”, Zh Èksper Teoret Fiz, 111:1 (2010), 97–103  crossref  isi
    28. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    29. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
    30. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    31. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
    32. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
    33. Tong N.-H., “Equation-of-Motion Series Expansion of Double-Time Green'S Functions”, Phys. Rev. B, 92:16 (2015), 165126  crossref  isi
    34. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Investigation of the Generalized Anderson Impurity Model”, 3rd International Conference on Nanotechnologies and Biomedical Engineering, Ifmbe Proceedings, 55, ed. Sontea V. Tiginyanu I., Springer, 2016, 209–212  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:425
    Full text:158
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020