RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 123, Number 1, Pages 38–43 (Mi tmf583)  

This article is cited in 6 scientific papers (total in 6 papers)

Geometric description of a relativistic string

S. V. Talalov

Togliatti State University, Branch of Samara State Pedagogical University

Abstract: Classical three-dimensional relativistic string theory is considered in terms of world sheet quadratic forms. Taking the second quadratic form, not only the first one, into account is essential. A system of nonlinear evolution equations describing the string dynamics at the surface of primary constraints in a conformally invariant manner is derived. The results are generalized to the four-dimensional case.

DOI: https://doi.org/10.4213/tmf583

Full text: PDF file (171 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 123:1, 446–450

Bibliographic databases:

Received: 17.05.1999

Citation: S. V. Talalov, “Geometric description of a relativistic string”, TMF, 123:1 (2000), 38–43; Theoret. and Math. Phys., 123:1 (2000), 446–450

Citation in format AMSBIB
\Bibitem{Tal00}
\by S.~V.~Talalov
\paper Geometric description of a relativistic string
\jour TMF
\yr 2000
\vol 123
\issue 1
\pages 38--43
\mathnet{http://mi.mathnet.ru/tmf583}
\crossref{https://doi.org/10.4213/tmf583}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1773211}
\zmath{https://zbmath.org/?q=an:1031.81629}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 1
\pages 446--450
\crossref{https://doi.org/10.1007/BF02551050}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000087532100003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf583
  • https://doi.org/10.4213/tmf583
  • http://mi.mathnet.ru/eng/tmf/v123/i1/p38

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Talalov, “$N$-soliton strings in four-dimensional space–time”, Theoret. and Math. Phys., 152:3 (2007), 1234–1242  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Guler, Y, “The Klein-Gordon field and a relativistic particle as a system”, Nuovo Cimento Della Societa Italiana Di Fisica B-General Physics Relativity Astronomy and Mathematical Physics and Methods, 122:8 (2007), 833  mathscinet  isi
    3. S. V. Talalov, “Description of braids in terms of first-order spectral problems”, Theoret. and Math. Phys., 159:1 (2009), 469–473  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. V. Talalov, “An anyon model”, Theoret. and Math. Phys., 165:2 (2010), 1517–1526  mathnet  crossref  crossref  isi
    5. Talalov S.V., “The Anyon Model: An Example Inspired By String Theory”, Internat J Modern Phys A, 26:16 (2011), 2757–2772  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    6. Talalov S.V., “Planar String as an Anyon Model: Cusps, Braids and Soliton Exitations”, 7th International Conference on Quantum Theory and Symmetries (Qts7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012121  crossref  isi  scopus  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:267
    Full text:94
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020