RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1991, Volume 89, Number 1, Pages 18–24 (Mi tmf5843)  

This article is cited in 7 scientific papers (total in 7 papers)

Spectrum of a self-adjoint operator in $L_2(K)$, where $K$ is a local field; analog of the Feynman–Kac formula

R. S. Ismagilov


Abstract: We consider operators in $L_2(K)$, where $K$ is a local field that is a sum of the operator of convolution with a generalized function and multiplication by a function. A criterion of self-adjointness is given, and some results on the discrete spectrum are obtained. An analog of the Feynman–Kac formula is derived.

Full text: PDF file (720 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1991, 89:1, 1024–1028

Bibliographic databases:

Received: 12.11.1990

Citation: R. S. Ismagilov, “Spectrum of a self-adjoint operator in $L_2(K)$, where $K$ is a local field; analog of the Feynman–Kac formula”, TMF, 89:1 (1991), 18–24; Theoret. and Math. Phys., 89:1 (1991), 1024–1028

Citation in format AMSBIB
\Bibitem{Ism91}
\by R.~S.~Ismagilov
\paper Spectrum of a~self-adjoint operator in $L_2(K)$, where~$K$ is a local field; analog of the Feynman--Kac formula
\jour TMF
\yr 1991
\vol 89
\issue 1
\pages 18--24
\mathnet{http://mi.mathnet.ru/tmf5843}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1151367}
\zmath{https://zbmath.org/?q=an:0780.47038|0766.47028}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 89
\issue 1
\pages 1024--1028
\crossref{https://doi.org/10.1007/BF01016802}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1991HT16100003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5843
  • http://mi.mathnet.ru/eng/tmf/v89/i1/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Kochubei, “On $p$-adic Green's functions”, Theoret. and Math. Phys., 96:1 (1993), 854–865  mathnet  crossref  mathscinet  zmath  isi
    2. A. N. Kochubei, “Gaussian integrals and spectral theory over a local field”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 495–503  mathnet  crossref  mathscinet  zmath  isi
    3. Smolyanov O.G., Shamarov N.N., “Gamiltonovy formuly feinmana dlya uravnenii, soderzhaschikh operator vladimirova s peremennymi koeffitsientami”, Doklady Akademii nauk, 440:5 (2011), 597–602  elib
    4. R. S. Ismagilov, “Asymptotic form of the spectrum of operators associated with $p$-adic fields”, Theoret. and Math. Phys., 180:1 (2014), 753–758  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. A. D. Bendikov, A. A. Grigor'yan, Ch. Pittet, W. Woess, “Isotropic Markov semigroups on ultra-metric spaces”, Russian Math. Surveys, 69:4 (2014), 589–680  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. R. S. Ismagilov, “Spectral Trace Formula for Local Fields”, Math. Notes, 98:6 (2015), 926–931  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Dragovich B. Khrennikov A.Yu. Kozyrev S.V. Volovich I.V. Zelenov E.I., “P-Adic Mathematical Physics: the First 30 Years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:310
    Full text:80
    References:33
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019