RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 123, Number 1, Pages 132–149 (Mi tmf592)  

This article is cited in 1 scientific paper (total in 1 paper)

A crystal with a singular potential in a homogeneous electric field

A. A. Pozharskii

St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: We study the asymptotic behavior of solutions to the one-dimensional Schrödinger equation $-\psi"+q(x)\psi-Fx\psi=E\psi$ for large arguments. We assume that the potential $q$ is a periodic function and is absolutely integrable over the period. We show that the spectral problem for the original Schrödinger equation can be reduced to the spectral problem for a discrete system. If the potential $q$ is smooth, the transition matrix tends to the unit matrix rapidly; if $q$ is not smooth, the transition matrix tends to the unit matrix slowly, and the discrete system demonstrates random properties. This explains why the spectrum of the original equation has remained practically unexplored.

DOI: https://doi.org/10.4213/tmf592

Full text: PDF file (265 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 123:1, 524–538

Bibliographic databases:

Received: 31.05.1999

Citation: A. A. Pozharskii, “A crystal with a singular potential in a homogeneous electric field”, TMF, 123:1 (2000), 132–149; Theoret. and Math. Phys., 123:1 (2000), 524–538

Citation in format AMSBIB
\Bibitem{Poz00}
\by A.~A.~Pozharskii
\paper A crystal with a singular potential in a homogeneous electric field
\jour TMF
\yr 2000
\vol 123
\issue 1
\pages 132--149
\mathnet{http://mi.mathnet.ru/tmf592}
\crossref{https://doi.org/10.4213/tmf592}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1773216}
\zmath{https://zbmath.org/?q=an:0981.34082}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 1
\pages 524--538
\crossref{https://doi.org/10.1007/BF02551059}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000087532100012}


Linking options:
  • http://mi.mathnet.ru/eng/tmf592
  • https://doi.org/10.4213/tmf592
  • http://mi.mathnet.ru/eng/tmf/v123/i1/p132

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Pozharskii, “Semicrystal with a singular potential in an accelerating electric field”, Theoret. and Math. Phys., 146:3 (2006), 343–360  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:207
    Full text:110
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020