|
This article is cited in 2 scientific papers (total in 2 papers)
Generalized hodograph method from the group-theoretical point of view
V. R. Kudashev, S. E. Sharapov
Abstract:
It is shown that the scale invariance of equations of hydrodynamic type leads to an algebraic construction of a series of group-invariant solutions corresponding to the generalized hodograph method. A solution of Whitham's equations for the KdV equation is obtained for certain initial conditions.
Full text:
PDF file (498 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1990, 85:2, 1155–1159
Bibliographic databases:
Received: 07.05.1990
Citation:
V. R. Kudashev, S. E. Sharapov, “Generalized hodograph method from the group-theoretical point of view”, TMF, 85:2 (1990), 205–210; Theoret. and Math. Phys., 85:2 (1990), 1155–1159
Citation in format AMSBIB
\Bibitem{KudSha90}
\by V.~R.~Kudashev, S.~E.~Sharapov
\paper Generalized hodograph method from the group-theoretical point of~view
\jour TMF
\yr 1990
\vol 85
\issue 2
\pages 205--210
\mathnet{http://mi.mathnet.ru/tmf5943}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1090076}
\zmath{https://zbmath.org/?q=an:0723.76009|0706.76005}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 2
\pages 1155--1159
\crossref{https://doi.org/10.1007/BF01086844}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1990FU79200005}
Linking options:
http://mi.mathnet.ru/eng/tmf5943 http://mi.mathnet.ru/eng/tmf/v85/i2/p205
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. R. Kudashev, S. E. Sharapov, “Inheritance of KdV symmetries under Whitham averaging and hydrodynamic symmetries of the Witham equations”, Theoret. and Math. Phys., 87:1 (1991), 358–363
-
A. M. Kamchatnov, “Gurevich–Pitaevskii problem and its development”, Phys. Usp., 64:1 (2021), 48–82
|
Number of views: |
This page: | 293 | Full text: | 127 | References: | 26 | First page: | 1 |
|