RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1990, Volume 85, Number 2, Pages 248–257 (Mi tmf5948)  

This article is cited in 35 scientific papers (total in 35 papers)

Diagram technique for the Hubbard model. II. Metal-insulator transition

S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko


Abstract: An approximate Dyson equation is formulated for the correlation Green's function and the free-energy diagrams corresponding to this approximation are summed. The basic equations that determine the Mott metal-insulator transition are established. The critical value of the Coulomb interaction is $U_c=W/2$, where $W$ is the width of the band.

Full text: PDF file (778 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1990, 85:2, 1185–1192

Bibliographic databases:

Received: 18.06.1990

Citation: S. I. Vakaru, M. I. Vladimir, V. A. Moskalenko, “Diagram technique for the Hubbard model. II. Metal-insulator transition”, TMF, 85:2 (1990), 248–257; Theoret. and Math. Phys., 85:2 (1990), 1185–1192

Citation in format AMSBIB
\Bibitem{VakVlaMos90}
\by S.~I.~Vakaru, M.~I.~Vladimir, V.~A.~Moskalenko
\paper Diagram technique for the Hubbard model.
II.~Metal-insulator transition
\jour TMF
\yr 1990
\vol 85
\issue 2
\pages 248--257
\mathnet{http://mi.mathnet.ru/tmf5948}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 2
\pages 1185--1192
\crossref{https://doi.org/10.1007/BF01086848}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1990FU79200009}


Linking options:
  • http://mi.mathnet.ru/eng/tmf5948
  • http://mi.mathnet.ru/eng/tmf/v85/i2/p248

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. N. N. Bogolyubov, V. A. Moskalenko, “On the existence of superconductivity in the Hubbard model”, Theoret. and Math. Phys., 86:1 (1991), 10–19  mathnet  crossref  mathscinet  zmath  isi
    2. N. N. Bogolyubov, V. A. Moskalenko, “Superconductivity in the hubbard model with deviation from half filling”, Theoret. and Math. Phys., 92:2 (1992), 820–825  mathnet  crossref  mathscinet  isi
    3. S. P. Cojocaru, V. A. Moskalenko, “A diagram method for the two-band Hubbard model”, Theoret. and Math. Phys., 97:2 (1993), 1290–1298  mathnet  crossref  isi
    4. Theoret. and Math. Phys., 103:1 (1995), 455–474  mathnet  crossref  isi
    5. V. S. Kapitonov, P. A. Sevastianov, “Integration over the superalgebra in the Hubbard model with the strong correlation”, Theoret. and Math. Phys., 107:2 (1996), 635–649  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. I. G. Medvedev, “New diagram technique for the Anderson model”, Theoret. and Math. Phys., 109:2 (1996), 1460–1472  mathnet  crossref  crossref  zmath  isi
    7. V. A. Moskalenko, “Perturbation theory for nonperiodic Anderson model”, Theoret. and Math. Phys., 110:2 (1997), 243–255  mathnet  crossref  crossref  zmath  isi
    8. V. A. Moskalenko, “Electron-phonon interaction of strong correlated systems”, Theoret. and Math. Phys., 111:3 (1997), 744–753  mathnet  crossref  crossref  isi
    9. V. A. Moskalenko, N. M. Plakida, “Dynamic spin susceptibility in the Hubbard model”, Theoret. and Math. Phys., 113:1 (1997), 1309–1321  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. V. A. Moskalenko, “Electron-phonon interaction of strongly correlated systems. II. Strong coupling limit”, Theoret. and Math. Phys., 113:3 (1997), 1559–1563  mathnet  crossref  crossref  isi
    11. V. A. Moskalenko, “Perturbation theory for the periodic Anderson model: II. Superconducting state”, Theoret. and Math. Phys., 116:3 (1998), 1094–1107  mathnet  crossref  crossref  zmath  isi
    12. V. A. Moskalenko, N. B. Perkins, “The canonical transformation method in the periodic Anderson model”, Theoret. and Math. Phys., 121:3 (1999), 1654–1665  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: A diagrammatic approach”, Physical Review B, 59:1 (1999), 619  crossref  adsnasa  isi
    14. Palistrant, ME, “Superconducting transition temperature and isotope exponent in superconductors with low Fermi energies”, Low Temperature Physics, 26:6 (2000), 407  crossref  adsnasa  isi
    15. Moskalenko V.A., Entel P., Marinaro M., Perkins N.B., Holtfort C., “Hopping perturbation treatment of the periodic Anderson model around the atomic limit”, Physical Review B, 63:24 (2001), 245119  crossref  adsnasa  isi
    16. Moskalenko, VA, “Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons”, Journal of Experimental and Theoretical Physics, 97:3 (2003), 632  crossref  adsnasa  isi
    17. Moskalenko, VA, “Strong interaction of correlated electrons with phonons”, Physics of Particles and Nuclei, 36 (2005), S100  isi
    18. D. F. Digor, P. Entel, V. A. Moskalenko, N. M. Plakida, “Peculiarities of pair interaction in the four-band Hubbard model”, Theoret. and Math. Phys., 149:1 (2006), 1382–1392  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Moskalenko, VA, “Strong interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model”, Physical Review B, 74:7 (2006), 075109  crossref  adsnasa  isi
    20. Moskalenka, VA, “Interaction of strongly correlated electrons and acoustical phonons”, Low Temperature Physics, 32:4–5 (2006), 462  crossref  adsnasa  isi
    21. V. A. Moskalenko, P. Entel, D. F. Digor, L. A. Dohotaru, R. Citro, “A diagram approach to the strong coupling in the single-impurity Anderson model”, Theoret. and Math. Phys., 155:3 (2008), 914–935  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    22. V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, Theoret. and Math. Phys., 159:1 (2009), 551–560  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    23. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    24. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
    25. Moskalenko V.A., Dohotaru L.A., “Diagrammatic theory for periodic anderson model”, Physics of Particles and Nuclei, 41:7 (2010), 1044–1049  crossref  isi
    26. Moskalenko V.A., Dohotaru L.A., Cebotari I.D., “Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential”, Zh Èksper Teoret Fiz, 111:1 (2010), 97–103  crossref  isi
    27. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    28. Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Electron-Phonon Interaction in a Spatially Disordered System with a Strong Interelectron Correlation”, Physics of Metals and Metallography, 111:2 (2011), 123–132  crossref  isi
    29. Kharrasov M.Kh., Kyzyrgulov I.R., Khusainov A.T., “Elektron-fononnoe vzaimodeistvie v prostranstvenno neuporyadochennoi sisteme s silnoi mezhelektronnoi korrelyatsiei”, Fizika metallov i metallovedenie, 111:2 (2011), 126–135  elib
    30. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
    31. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    32. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
    33. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
    34. Tong N.-H., “Equation-of-Motion Series Expansion of Double-Time Green'S Functions”, Phys. Rev. B, 92:16 (2015), 165126  crossref  isi
    35. Moskalenko V.A., Dohotaru L.A., Digor D.F., Cebotari I.D., “Investigation of the Generalized Anderson Impurity Model”, 3rd International Conference on Nanotechnologies and Biomedical Engineering, Ifmbe Proceedings, 55, eds. Sontea V., Tiginyanu I., Springer, 2016, 209–212  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:415
    Full text:132
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021